张量

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更代表的就是一种多位数组。

在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.

数学实例 Python 例子
0 纯量 (只有大小) s = 483
1 向量 (大小和方向) v = [1.1, 2.2, 3.3]
2 矩阵 (数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n阶 (自己想想看) ....

数据类型

Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

数据类型 Python 类型 描述
DT_FLOAT tf.float32 32 位浮点数.
DT_DOUBLE tf.float64 64 位浮点数.
DT_INT64 tf.int64 64 位有符号整型.
DT_INT32 tf.int32 32 位有符号整型.
DT_INT16 tf.int16 16 位有符号整型.
DT_INT8 tf.int8 8 位有符号整型.
DT_UINT8 tf.uint8 8 位无符号整型.
DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL tf.bool 布尔型.
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.

然后是tensorflow中对于各种数据的操作:

注意上面向量运算中第三个:分割(split)

固定值张量

tf.zeros(shape, dtype=tf.float32, name=None)

tf.zeros_like(tensor, dtype=None, name=None)

tf.ones(shape, dtype=tf.float32, name=None)

tf.ones_like(tensor, dtype=None, name=None

tf.fill(dims, value, name=None)创建一个张量的形状dims并填充它value

tf.constant(value, dtype=None, shape=None, name='Const')创建一个常数张量。

创建随机张量

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

从正态分布中输出随机值,由随机正态分布的数字组成的矩阵

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

从截断的正态分布中输出随机值,和 tf.random_normal() 一样,但是所有数字都不超过两个标准差

tf.random_shuffle(value, seed=None, name=None)

沿其第一维度随机打乱

tf.set_random_seed(seed)

设置图级随机种子

形状和变换

可用于确定张量的形状并更改张量的形状

  • tf.shape(input, name=None)

  • tf.size(input, name=None)

  • tf.rank(input, name=None)

  • tf.reshape(tensor, shape, name=None)

  • tf.squeeze(input, squeeze_dims=None, name=None)

  • tf.expand_dims(input, dim, name=None)

t = tf.placeholder(tf.float32,[None,2])

张量复制与组合

  • tf.identity(input, name=None)

  • tf.tuple(tensors, name=None, control_inputs=None)

  • tf.group(inputs, *kwargs)

  • tf.no_op(name=None)

  • tf.count_up_to(ref, limit, name=None)

逻辑运算符

  • tf.logical_and(x, y, name=None)

  • tf.logical_not(x, name=None)

  • tf.logical_or(x, y, name=None)

  • tf.logical_xor(x, y, name='LogicalXor')

比较运算符

  • tf.equal(x, y, name=None)

  • tf.not_equal(x, y, name=None)

  • tf.less(x, y, name=None)

  • tf.less_equal(x, y, name=None)

  • tf.greater(x, y, name=None)

  • tf.greater_equal(x, y, name=None)

  • tf.select(condition, t, e, name=None)

  • tf.where(input, name=None)

判断检查

  • tf.is_finite(x, name=None)

  • tf.is_inf(x, name=None)

  • tf.is_nan(x, name=None)

  • tf.verify_tensor_all_finite(t, msg, name=None) 断言张量不包含任何NaN或Inf

  • tf.check_numerics(tensor, message, name=None)

  • tf.add_check_numerics_ops()

  • tf.Assert(condition, data, summarize=None, name=None)

  • tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None)。

运行注意

import   os

os.environ['TF_CPP_MIN_LOG_LEVEL']=''

实例代码:

import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = ''
a = tf.constant(2)
# 0维() 一维(4) 二维(2,3) 三维(2,3,4)
# with tf.Session() as sess:
# print(a.shape)
# print(a.op)
# print(a.name)
b = tf.placeholder(tf.float32,[None,2])
print(b)
b.set_shape([3,2])
print(b)
# 一旦静态形状已经固定则不能设置了
# b.set_shape([3,2]) ValueError
# 下面是动态修改,就是生成一个和原来数据的元素数量匹配的新的
c = tf.reshape(b,[2,3])
print(c)

TensorFlow笔记-组件的更多相关文章

  1. tensorflow笔记(一)之基础知识

    tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇no ...

  2. tensorflow笔记(二)之构造一个简单的神经网络

    tensorflow笔记(二)之构造一个简单的神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7425200.html ...

  3. tensorflow笔记(三)之 tensorboard的使用

    tensorflow笔记(三)之 tensorboard的使用 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7429344.h ...

  4. tensorflow笔记(四)之MNIST手写识别系列一

    tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...

  5. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  6. tensorflow笔记:多层LSTM代码分析

    tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...

  7. Tensorflow 笔记

    TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 TensorFlow笔记-07-神经网络优化-学习率,滑动平均 TensorFlow笔记-06-神经网络优化-损失函数 ...

  8. TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点

    TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 首先提醒一下,第7讲的最后滑动平均的代码已经更新了,代码要比理论重要 今天是过拟合,和正则化,本篇后面可能或更有兴趣, ...

  9. TensorFlow笔记-07-神经网络优化-学习率,滑动平均

    TensorFlow笔记-07-神经网络优化-学习率,滑动平均 学习率 学习率 learning_rate: 表示了每次参数更新的幅度大小.学习率过大,会导致待优化的参数在最小值附近波动,不收敛:学习 ...

随机推荐

  1. 使用 Elastic Stack 来监控和调优 Golang 应用程序

    Golang 因为其语法简单,上手快且方便部署正被越来越多的开发者所青睐,一个 Golang 程序开发好了之后,势必要关心其运行情况,今天在这里就给大家介绍一下如果使用 Elastic Stack 来 ...

  2. C# 遍历窗体控件顺序问题

    今天在做C# winform 窗体控件遍历时遇到控件顺序的问题,也就是控件被遍历的先后问题.实际情况如下所述. 窗体界面如下: 界面构成是:主界面有一个 Panel (Panel_14),Panel_ ...

  3. 树莓派 Qt5.7交叉编译

    一.准备软件    1.2016-11-25-raspbian-jessie.img(官网下载)    2.cross-compile-tools-master.zip    3.gcc-4.7-li ...

  4. mysql数据库同步系统otter部署实践(中国与欧洲同步)

    otter的介绍就不说了, 自己去看官网https://github.com/alibaba/otter/wiki 本系统中, 中国的服务器部署在阿里云上, 欧洲服务器部署在亚马逊上, 由于阿里云的网 ...

  5. YxdIocp包含有支持大并发的TCP服务组件、HTTP服务组件、UDP服务组件、WebSocket服务组件

    Delphi Windows IOCP 通讯模型封装,基于DIOCP.YxdIocp包含有支持大并发的TCP服务组件.HTTP服务组件.UDP服务组件.WebSocket服务组件,和TCP.UDP等基 ...

  6. C#抓取远程Web网页信息的代码

    来自:http://www.jb51.net/article/9499.htm 通过程序自动的读取其它网站网页显示的信息,类似于爬虫程序.比方说我们有一个系统,要提取BaiDu网站上歌曲搜索排名.分析 ...

  7. vue补充

    一.安装vue-cli脚手架 1.淘宝镜像下载 用淘宝的国内服务器来向国外的服务器请求,我们向淘宝请求,而不是由我们直接向国外的服务器请求,会大大提升请求速度,使用时,将所有的npm命令换成cnpm即 ...

  8. Varnish动静分离配置示例

    动静分离 [root@varnish ~]# vim /etc/varnish/default.vclvcl 4.0;backend web { .host = "192.168.30.15 ...

  9. gitlab安装笔记三_Centos7安装GitLab

    系统版本是CentOS-7-x86_64-Everything-1804.iso,很多软件默认都有了,不需要安装 https://about.gitlab.com/install/#centos-7 ...

  10. 关于C# 异步

    关于C# 异步操作整理 按照个人的理解, 写一个接口用Task异步操作(态度:接受并且学习,您提出宝贵的经验与理解,我会认真学习): 在主线程中调用异步方法,如果主线程依赖异步方法的返回值那么你一定会 ...