我的代码-models
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
from imblearn.over_sampling import SMOTE
# In[37]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\Copy of sampling.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
for i in range(7,25):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
nz = Normalizer()
data.iloc[:,17:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,17:19]),columns=data.iloc[:,17:19].columns)
data.iloc[:,7:10]=pd.DataFrame(nz.fit_transform(data.iloc[:,7:10]),columns=data.iloc[:,7:10].columns)
data.to_csv(r"D:\Users\sgg91044\Desktop\impution\AEM214_imputed_normalized.csv")
# In[2]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\Copy of sampling.csv")
data.head()
# In[3]:
data.iloc[:,5:23] = data.iloc[:,5:23].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
# In[4]:
Y = data.Target
X = data.drop(columns='Target')
# In[5]:
X=X.drop(columns=['slotid','Recipe_Name','defect_count'])
# In[6]:
X
# In[7]:
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
# In[8]:
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
# In[9]:
print(y_train.value_counts(), np.bincount(y_train_smote))
# In[10]:
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# In[11]:
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[ ]:
# Make predictions on the test data
y_pred = random_forest.predict_proba(X_test)
# In[13]:
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[14]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[15]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[16]:
print(confusion_matrix(y_pred=y_pred,y_true=y_test))
# In[21]:
svc=SVC(kernel='poly',degree=2,gamma=1,coef0=0)
# In[ ]:
svc.fit(x_train_smote,y_train_smote)
# In[ ]:
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
# In[17]:
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]},
{'kernel':['poly'],'degree':[2,3,5]}]
clf = GridSearchCV(SVC(),param_grid=tuned_parameters,cv=3,scoring='recall',verbose=True)
clf.fit(x_train_smote,y_train_smote)
# In[18]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling1.csv")
data.iloc[:,7:26] = data.iloc[:,7:26].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
data.eqpid = data.eqpid.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[19]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[20]:
print(confusion_matrix(y_pred=y_pred,y_true=y_test))
# In[21]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[22]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[71]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling3.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[72]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[53]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[54]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[55]:
data= pd.read_csv(r"D:\Users\sgg91044\Desktop\impution\sampling2.csv")
data.iloc[:,7:25] = data.iloc[:,7:25].apply(pd.to_numeric,errors='coerce')
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
X=X.drop(columns=['eqpid','lotid','Chamber','slotid','Step','Recipie_Name','defect_count'])
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
print(y_train.value_counts(), np.bincount(y_train_smote))
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, oob_score = True, n_jobs = -1)
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[57]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[58]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[59]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[ ]:
import flask
我的代码-models的更多相关文章
- 【Django】基于Django架构网站代码的目录结构
经典的Django项目源码目录结构 Django在一个项目的目录结构划分方面缺乏必要的规范.在Django的官方文档中并没有给出大型项目的代码建议目录结构,网上的文章也是根据项目的不同结构也有适当的 ...
- 使用 CodeIgniter 框架快速开发 PHP 应用(三)
原文:使用 CodeIgniter 框架快速开发 PHP 应用(三) 分析网站结构既然我们已经安装 CI ,我们开始了解它如何工作.读者已经知道 CI 实现了MVC式样. 通过对目录和文件的内容进行分 ...
- Django__RBAC
RBAC : 基于角色的权限访问控制(Role-Based Access Control) RBAC 模型作为目前最为广泛接受的权限模型 角色访问控制(RBAC)引入了Role的概念,目的是为了隔离U ...
- 用beego开发服务端应用
用beego开发服务端应用 说明 Quick Start 安装 创建应用 编译运行 打包发布 代码生成 开发文档 目录结构说明 使用配置文件 beego默认参数 路由设置 路由的表述方式 直接设置路由 ...
- 从零搭建基于golang的个人博客网站
原文链接 : http://www.bugclosed.com/post/14 从零搭建个人博客网站需要包括云服务器(虚拟主机),域名,程序环境,博客程序等方面.本博客 就是通过这几个环节建立起来的, ...
- Django——微信消息推送
前言 微信公众号的分类 微信消息推送 公众号 已认证公众号 服务号 已认证服务号 企业号 基于:微信认证服务号 主动推送微信消息. 前提:关注服务号 环境:沙箱环境 沙箱环境地址: https://m ...
- xadmin的使用
01-下载源码 GitHub地址:https://github.com/sshwsfc/xadmin # 安装xadmin 由于使用的是Django2.0的版本,所以需要安装xadmin项目djang ...
- python django基础一web框架的本质
web框架的本质就是一个socket服务端,而浏览器就是一个socker客户端,基于请求做出相应,客户端先请求,服务器做出对应响应 按照http协议的请求发送,服务器按照http协议来相应,这样的通信 ...
- Django之win7下安装与命令行工具
Django之win7下安装与命令行工具 下载安装 pip3 install django 注意:自动添加环境变量 测试是否安装成功 1.输入python 2.输入import django 3.输入 ...
随机推荐
- Perl调用外部命令(其他脚本、系统命令)的方法和区别
1. `command`; 使用反引号调用外部命令能够捕获其标准输出,并按行返回且每行结束处附带一个回车.反引号中的变量在编译时会被内插为其值. 2. open LIST "ls -l| ...
- PotPlayer安装与配置
目录 1.简介 2.安装 3.设置 基本选项设置: 播放选项设置: PotPlayer皮肤设置: 1.简介 PotPlayer一款小巧简单的视频播放软件,具有于强大的定制能力和个性化功能. 2.安装 ...
- npm使用国内镜像的方法
一.通过命令配置1. 命令 npm config set registry https://registry.npm.taobao.org 2. 验证命令 npm config get registr ...
- Docker安装Tomcat镜像并部署web项目
一.安装Tomcat 1.查找Docker Hub上的tomcat镜像 docker search tomcat 2.拉取官方的镜像 docker pull tomcat 等待下载完毕,需要一些时间. ...
- .gitlab-ci.yml简介
关键字 script 由Runner执行的Shell脚本. image 使用docker镜像, image:name service 使用docker services镜像, services ...
- 2018 German Collegiate Programming Contest (GCPC 18)
2018 German Collegiate Programming Contest (GCPC 18) Attack on Alpha-Zet 建树,求lca 代码: #include <al ...
- guxh的python笔记六:类的属性
1,私有属性 class Foo: def __init__(self, x): self.x = x 类的属性在实例化之后是可以更改的: f = Foo(1) print(f.x) # 1 f.x ...
- VUE环境搭建、创建项目、vue调试工具
环境搭建 第一步 安装node.js 打开下载链接: https://nodejs.org/en/download/ 这里下载的是node-v6.9.2-x64.msi; 默认式的安装,默认 ...
- 将1~n个整数按照字典序进行排序
题意:给定一个整数n,给定一个整数k,将1~n个整数按字典顺序进行排序,返回排序后第k个元素. 题目链接:HDU6468 多组输入,T<=100,n<=1e6 分析:这个题和之前做的模拟出 ...
- map传参上下文赋值的问题
今天开发遇到一个问题就是声明一个map<String,String> param ,给param赋值,明明有结果但是就是返回为空:下面附上代码: 因为在一个大的循环中,param是公用赋值 ...