[LeetCode]220. 存在重复元素 III
题目链接:https://leetcode-cn.com/problems/contains-duplicate-iii/
题目描述:
给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最大为 k。
示例:
示例 1:
输入: nums = [1,2,3,1], k = 3, t = 0
输出: true
示例 2:
输入: nums = [1,0,1,1], k = 1, t = 2
输出: true
示例 3:
输入: nums = [1,5,9,1,5,9], k = 2, t = 3
输出: false
思路:
这道题应该是 Hard
难度的(看通过率就知道了)
简单想法:维护一个长度为 k+1
的连续队列, 在这队列里一定任何两个数索引号相差 不会超过k
,当队列存在两个数相差为t
,那么返回为 true
简单想法代码如下,这个一定要理解,后面只是换了数据结构!
class Solution:
def containsNearbyAlmostDuplicate(self, nums: List[int], k: int, t: int) -> bool:
from collections import deque
import bisect
n = len(nums)
if n <= 1: return False
m = min(n, k + 1)
# 维护一个长度为 k + 1 队列
queue = sorted(nums[:m])
# 要删除数
to_del = deque()
to_del.extendleft(nums[:m])
# 先判断首先 k + 1 队列是否存在满足条件的
for i in range(1, m):
if queue[i] - queue[i - 1] <= t:
return True
for i in range(m, n):
# 移动队列
queue.remove(to_del.pop())
# 二分插入
loc = bisect.bisect_left(queue, nums[i])
queue.insert(loc, nums[i])
# 判断它在队列中左右两边数是否小于等于t
if (loc - 1 >= 0 and nums[i] - queue[loc - 1] <= t) or \
(loc + 1 <= k and queue[loc + 1] - nums[i] <= t):
return True
to_del.appendleft(nums[i])
return False
上面的代码也能过,但是极慢,为什么?
原因就是数组插入删除的时间复杂度为 \(O(n)\),有没有一种数据结构又能排好序,然而删除添加的时间复杂度有很少呢?\(log(n)\)
当然有了,那就是二叉排序树(BST)Python
没有自带的库, Java
里有 TreeSet
但是可以自己实现,网上找到的代码,大家感兴趣研究一下,(哭!不想看,后面还有一个桶排序要看一下啊!
from collections import deque
class BSTNode:
def __init__(self, dlnode):
self.ptr = dlnode
self.l = None
self.r = None
class BST:
def __init__(self, head):
self.root = BSTNode(head)
def insert(self, dlnode):
def insertHelper(root, dlnode, min_, max_):
if dlnode.v <= root.ptr.v:
if not root.l:
root.l = BSTNode(dlnode)
if min_:
min_ = min_.ptr
return min_, root.ptr
return insertHelper(root.l, dlnode, min_, root)
else:
if not root.r:
root.r = BSTNode(dlnode)
if max_:
max_ = max_.ptr
return root.ptr, max_
return insertHelper(root.r, dlnode, root, max_)
return insertHelper(self.root, dlnode, None, None)
def delNode(self, node):
tmp, prev = self.root, None
while tmp and node != tmp.ptr:
prev = tmp
if node.v <= tmp.ptr.v:
tmp = tmp.l
else:
tmp = tmp.r
if tmp == None:
return f'Something went wrong, Node {node} not found...'
else:
if tmp.l and tmp.r:
tmp2, prev2 = tmp.r, None
while tmp2.l:
prev2 = tmp2
tmp2 = tmp2.l
if prev2:
prev2.l = tmp2.r
if prev:
if prev.l == tmp:
prev.l = tmp2
elif prev.r == tmp:
prev.r = tmp2
else:
return 'Something went wrong.'
else:
self.root = tmp2
tmp2.l = tmp.l
if tmp2 != tmp.r:
tmp2.r = tmp.r
elif tmp.l:
if prev:
if prev.l == tmp:
prev.l = tmp.l
elif prev.r == tmp:
prev.r = tmp.l
else:
return 'Something went wrong.'
else:
self.root = tmp.l
elif tmp.r:
if prev:
if prev.l == tmp:
prev.l = tmp.r
elif prev.r == tmp:
prev.r = tmp.r
else:
return 'Something went wrong.'
else:
self.root = tmp.r
else:
if prev:
if prev.l == tmp:
prev.l = None
elif prev.r == tmp:
prev.r = None
else:
return 'Something went wrong.'
else:
self.root = tmp.r
del tmp
def popByorder(self):
def inorderPop(root):
nodes = []
if root.l:
nodes += inorderPop(root.l)
nodes += [root.ptr]
if root.r:
nodes += inorderPop(root.r)
return nodes
return inorderPop(self.root)
def __str__(self):
def inorder(root):
s = ''
if root.l:
s += inorder(root.l)
s += f' -> {root.ptr.v}'
if root.r:
s += inorder(root.r)
return s
return 'BST' + inorder(self.root)
class DLNode:
def __init__(self, v):
self.v = v
self.next = None
self.prev = None
class DList:
def __init__(self, v):
self.head = DLNode(v) if isinstance(v, int) else v
self.tail = self.head
def append(self, node):
if self.head == self.tail:
self.head.next = node
self.tail.next = node
node.prev = self.tail
self.tail = node
def insert(self, l, m, r):
if l and r:
l.next = m
m.next = r
r.prev = m
m.prev = l
elif l:
self.tail = m
l.next = m
m.prev = l
elif r:
self.head = m
m.next = r
r.prev = m
def delHead(self):
tmp = self.head
self.head = self.head.next
self.head.prev = None
del tmp
def delTail(self):
tmp = self.tail
self.tail = self.tail.prev
self.tail.next = None
del tmp
def delNode(self, d):
if d == self.head:
self.delHead()
elif d == self.tail:
self.delTail()
else:
d.prev.next = d.next
d.next.prev = d.prev
del d
def __str__(self):
s = f'{self.head.v}'
tmp = self.head.next
while tmp:
s += f' -> {tmp.v}'
tmp = tmp.next
return s
class Solution:
def containsNearbyAlmostDuplicate(self, nums: List[int], k: int, t: int) -> bool:
if not nums or k == 0:
return False
n = len(nums)
m = DLNode(nums[0])
bst = BST(m)
toDel = deque([m])
for x in nums[1:k + 1]:
m = DLNode(x)
_, _ = bst.insert(m)
toDel.append(m)
for i, m in enumerate(bst.popByorder()):
if i == 0:
dl = DList(m)
else:
dl.append(m)
i, j = dl.head, dl.head.next
while j:
if j.v - i.v <= t:
return True
i = i.next
j = j.next
if k < n:
for x in nums[k + 1:]:
d = toDel.popleft()
bst.delNode(d)
m = DLNode(x)
l, r = bst.insert(m)
if (l and m.v - l.v <= t) or (r and r.v - m.v <= t):
return True
toDel.append(m)
return False
是的,还有一种思路,桶排序[1]
大家自行用例子模拟,感觉一下!
时间复杂度:\(O(n)\)
class Solution:
def containsNearbyAlmostDuplicate(self, nums: List[int], k: int, t: int) -> bool:
from collections import OrderedDict
n = len(nums)
if n <= 1 or k < 1 or t < 0: return False
queue = OrderedDict()
for n in nums:
key = n if not t else n // t
for m in [queue.get(key-1), queue.get(key), queue.get(key+1)]:
if m is not None and abs(n - m) <= t:
return True
if len(queue) == k:
queue.popitem(False)
queue[key] = n
return False
[LeetCode]220. 存在重复元素 III的更多相关文章
- Java实现 LeetCode 220 存在重复元素 III(三)
220. 存在重复元素 III 给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最 ...
- Leetcode 220.存在重复元素III
存在重复元素III 给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最大为 ķ. ...
- 220. 存在重复元素 III
题目: 给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最大为 ķ. 示例 1: ...
- 【每日算法】存在重复元素 III
题目描述 这是 LeetCode 上的 220. 存在重复元素 III, 难度为 [中等] 给你一个整数数组 nums 和两个整数 k 和 t .请你判断是否存在 两个不同下标 i 和 j,使得 ab ...
- LeetCode:存在重复元素【217】
LeetCode:存在重复元素[217] 题目描述 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 示例 ...
- leetcode——217. 存在重复元素
leetcode--217. 存在重复元素 题目描述:给定一个整数数组,判断是否存在重复元素. 如果存在一值在数组中出现至少两次,函数返回 true .如果数组中每个元素都不相同,则返回 false ...
- [LeetCode] 220. Contains Duplicate III 包含重复元素 III
Given an array of integers, find out whether there are two distinct indices i and j in the array suc ...
- [LeetCode]-217.存在重复元素-简单
217. 存在重复元素 给定一个整数数组,判断是否存在重复元素. 如果存在一值在数组中出现至少两次,函数返回 true .如果数组中每个元素都不相同,则返回 false . 示例 1: 输入: [1, ...
- Leetcode 217.存在重复元素 By Python
给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 示例 1: 输入: [1,2,3,1] 输出: true ...
随机推荐
- https://stackblitz.com/github/cwiki-us-angular/cwiki-us-angular-app 导入后如何添加到自己的项目
将 https://stackblitz.com/github/cwiki-us-angular/cwiki-us-angular-app 导入到界面后,如何将这个项目添加到自己的项目里面. 然后再自 ...
- TopCoder SRM 667 Div.2题解
概览: T1 枚举 T2 状压DP T3 DP TopCoder SRM 667 Div.2 T1 解题思路 由于数据范围很小,所以直接枚举所有点,判断是否可行.时间复杂度O(δX × δY),空间复 ...
- CTS2019&APIO2019爆炸记
三天一道题都不会做,喜提双Cu,我是不是没救了.. 不知道哪天会把这篇游记补上..
- (转译)2019年WEB漏洞扫描工具和软件前十名推荐
这些工具都有助于发现漏洞,从而最大限度地提高测试人员的时间和效率.这些工具,2019年更新,也可用于寻找漏洞. 为何扫描? 这资源是什么? Web应用程序对黑客具有极大的吸引力,并且出于百万种不同的原 ...
- sqlmap自动注入1(Target完整的超级详细 如有错误望指出)
SQLmap的自动注入学习之路(1) 是通过五种sql注入漏洞的检测技术 ' and(select*from(select(sleep(20)))a)# 这是基于时间的盲注检测 看他返回的时间 可以在 ...
- 前端学习之三——jquery选择器
Jquery中的选择器分为几大类:基本过滤选择器,层次选择器,内容过滤选择器,可见性过滤选择器,属性过滤选择器,子元素过滤选择器,表单对象选择器和表单对象属相过滤选择器. 1.非基本过滤选择器,一般需 ...
- 我非要捅穿这 Neutron(三)架构分析与代码实现篇(基于 OpenStack Rocky)
目录 文章目录 目录 Neutron 的软件架构分析与实现 Neutron Server 启动流程 获取 WSGI Application Core API & Extension API C ...
- python调用不同目录中类的终极方法
1.在需要导入别的类包中加入这两行代码 BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))sys.path.a ...
- bootstrap select2控件
- DSP28335 GPIO学习
根据网络资料以及以下两篇博客整理 http://blog.sina.com.cn/s/blog_86a6035301017rr7.html http://blog.csdn.net/hmf123578 ...