在开始之前,我们先来明确一下什么是数据驱动,在百度百科中数据驱动的解释是:数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子。利用黑盒测试法进行动态测试时,需要测试软件产品的功能,不需测试软件产品的内部结构和处理过程。数据驱动测试注重于测试软件的功能性需求,也即数据驱动测试使软件工程师派生出执行程序所有功能需求的输入条件。

 

 

这说的是什么?为什么我完全不懂!!!咱们来分析一下。

利用黑盒测试法进行动态测试时,需要测试软件产品的功能,不需测试软件产品的内部结构和处理过程 – 重点在测试功能,不需要考虑内部处理过程

也即数据驱动测试使软件工程师派生出执行程序所有功能需求的输入条件 – 重点在测试时候的输入条件

在实际的自动化测试中,数据驱动是通过数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变,简单的来说,就是将测试数据与实际的测试代码区分开。

Python中大部分人最先接触的测试框架就是unittest,可是unittest本身并不支持数据驱动,需要借助ddt来实现。接着我们就用unittest+ddt来给大家看一下数据驱动。

ddt是 “Data-Driven Tests”的缩写。官方资料是:http://ddt.readthedocs.io/en/latest/。

下面是每个组件的简单介绍:

ddt.ddt:

装饰类,用于unittest.TestCase子类的类装饰器。

ddt.data:

添加到unittest.TestCase测试用例上的方法装饰器。

ddt.file_data(value):

添加到unittest.TestCase测试用例上的方法装饰器。

value应该是文件目录的路径。文件应该包含JSON编码的数据,可以是列表,也可以是dict。

如果文件中是列表,每个列表的值会作为测试用例参数,同时作为测试用例方法名后缀显示。

如果文件中是字典,字典的key会作为测试用例方法的后缀显示,字典的值会作为测试用例参数。

ddt.unpack:

传递的是复杂的数据结构时使用。比如使用元组或者列表,添加unpack之后,ddt会自动把元组或者列表对应到多个参数上。

我们来用实例感受一下每个组件,先用data来传入比较简单的值,来做数据驱动。

简单数据注入:

import ddt

import unittest

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.data(1,2,3,4,5,6)

def test_case_01(self,value):

print("value is: "+ str(value))

if __name__ == "__main__":

unittest.main()

运行中发现,有6组数据,一共执行了6次

 

测试方法后会被ddt加一个后缀,ddt会尝试把测试数据转化为后缀附在测试方法后,组成一个新的名字。

复杂数据注入:

如果尝试着用一些比较复杂的数据,比如元组/列表/字典,我们就需要调用unpack来实现,下面是一些例子

import ddt

import unittest

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.unpack

@ddt.data({'value1': '孙俪', 'value2': '邓超'},

{'value1': '蔡少芬', 'value2': '张晋'},

{'value1': '袁咏仪', 'value2': '张智霖'})

def test_case_01(self,value1,value2):

print("value1 is: " + value1)

print("value2 is: " + value2)

@ddt.unpack

@ddt.data((1,2),(3,4),(5,6))

def test_case_02(self, value1, value2):

print("value1 is: " + str(value1))

print("value2 is: " + str(value2))

@ddt.unpack

@ddt.data([1,9],[2,8],[3,7])

def test_case_03(self, value1, value2):

sum = value1 + value2

self.assertEqual(sum, 10)

if __name__ == "__main__":

unittest.main()

现在也有一种比较流行的处理方式,不借助unpack可以直接做字典数据的注入。

import ddt

import unittest

data = ({'value1': '孙俪', 'value2': '邓超'},

{'value1': '蔡少芬', 'value2': '张晋'},

{'value1': '袁咏仪', 'value2': '张智霖'})

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.data(*data)

def test_case_01(self,data):

print("value1 is: " + data['value1'])

print("value2 is: " + data['value2'])

if __name__ == "__main__":

unittest.main()

 

文件数据注入:

有时候,将测试数据直接写到Python文件里不利于我们对数据的管理,这时候,我们就可以借助文件来做数据的注入。

创建一个yml文件:

- 1

- 2

- 3

- 4

创建一个json文件:

{

"positive_integer_range": {

"start": 0,

"end": 2,

"value": 1

},

"negative_integer_range": {

"start": -2,

"end": 0,

"value": -1

},

"positive_real_range": {

"start": 0.0,

"end": 1.0,

"value": 0.5

},

"negative_real_range": {

"start": -1.0,

"end": 0.0,

"value": -0.5

}

}

然后将yml与json文件注入测试用例中

import ddt

import unittest

@ddt.ddt

class TestCase(unittest.TestCase):

def setUp(self):

print("Before every test case!")

@ddt.file_data('testdata_dic.json')

def test_case_01(self,start,end,value):

print("start is: " + str(start))

print("end is: " + str(end))

print("value is: " + str(value))

@ddt.file_data('testdata_list.yml')

def test_case_02(self, value):

print("value is: " + str(value))

if __name__ == "__main__":

unittest.main()

运行之后结果为:

 

这样,就为我们数据驱动的用法提供了多样性。

最后,希望本文能帮助到大家。

作  者:Testfan  Chris

出  处:微信公众号:自动化软件测试平台

版权说明:欢迎转载,但必须注明出处,并在文章页面明显位置给出文章链接

Python数据驱动DDT的应用的更多相关文章

  1. Python 数据驱动ddt 使用

    准备工作: pip install ddt 知识点: 一,数据驱动和代码驱动: 数据驱动的意思是  根据你提供的数据来测试的  比如 ATP框架 需要excel里面的测试用例 代码驱动是必须得写代码  ...

  2. python 数据驱动ddt使用,需要调用下面的代码,请挨个方法调试,把不用的注释掉

    #!/usr/bin/env/python # -*- coding: utf-8 -*- # @Time : 2018/12/15 15:27 # @Author : ChenAdong # @Em ...

  3. Python数据驱动ddt

    import ddtimport unittest """ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file ...

  4. 【webdriver自动化】Python数据驱动工具DDT

    一.Python数据驱动工具ddt 1.  安装 ddt pip install ddt DDT是 “Data-Driven Tests”的缩写 资料:http://ddt.readthedocs.i ...

  5. python webdriver 测试框架-数据驱动DDT的例子

    先在cmd环境 运行 pip install ddt 安装数据驱动ddt模块  脚本: #encoding=utf-8 from selenium import webdriver import un ...

  6. Python3数据驱动ddt

    对于同一个方法执行大量数据的程序时,我们可以采用ddt数据驱动的方式,来对数据规范化整理及输出 一.需要使用python的ddt库,ddt,data,unpack方法 1.仅使用ddt和data,代码 ...

  7. Python 数据驱动工具:DDT

    背景 python 的unittest 没有自带数据驱动功能. 所以如果使用unittest,同时又想使用数据驱动,那么就可以使用DDT来完成. DDT是 “Data-Driven Tests”的缩写 ...

  8. Python 数据驱动 unittest + ddt

    一数据驱动测试的含义: 在百度百科上的解释是: 数据驱动测试,即黑盒测试(Black-box Testing),又称为功能测试,是把测试对象看作一个黑盒子.利用黑盒测试法进行动态测试时,需要测试软件产 ...

  9. python之数据驱动ddt操作(方法一)

    下载ddt并安装 Pip install ddt 或者官网下载安装 http://ddt.readthedocs.io/en/latest/ https://github.com/txels/ddt ...

随机推荐

  1. ts-loader如何与vue单文件组件衔接

    .ts-loader是如何与vue单文件组件衔接作用的 https://github.com/microsoft/TypeScript-Vue-Starter https://www.npmjs.co ...

  2. 安德鲁1.2Ku全下125C波(CCTV4K除外)

    闲来无事.没事挑战下难度. 前面高楼挡住了,一直没有试过125, 没想到1.2的锅能全下 机器:恐龙机dinobot4K+ 天线:安德鲁1.2ku 接送结果:除4K外所有高清 图片如下

  3. 对js原型对象、实例化对象及prototype属性的一些见解

    什么是原型对象? 请看下面的代码,我们以各种姿势,创建了几个方法! function fn1() { } var fn2 = function () { } var fn3 = new Functio ...

  4. Linux文件权限码

    权限 二进制值 八进制值 描述 --- 000 0 没有任何权限 --x 001 1 只有执行权限 -w- 010 2 只有写入权限 -wx 011 3 有写入和执行权限 r-- 100 4 只有读取 ...

  5. linux静态IP配置和网关配置

    我们在配置CentOS的时候,很多情况需要能联外网,那么就需要DNS解析功能,默认的是没有配置DNS信息的,所以我们得配置DNS信息起因我们在搜索Centos配置DNS信息的时候,很多都是说在这个文件 ...

  6. python 学习笔记三 (函数)

    1.把函数视为对象 def factorial(n): '''return n!''' return 1 if n < 2 else n*factorial(n-1) print(factori ...

  7. Kick Start 2019 Round A Contention

    $\DeclareMathOperator*{\argmax}{arg\,max}$ 题目链接 题目大意 一排 $N$ 个座位,从左到右编号 $1$ 到 $N$ . 有 $Q$ 个预定座位的请求,第 ...

  8. sublime集成MinGW,打造C/C++开发环境

    MinGW是是将GCC编译器和GNU Binutils移植到Win32平台下的产物,包括一系列头文件(Win32API).库和可执行文件.MinGW是从Cygwin(1.3.3版)基础上发展而来.GC ...

  9. n=C(2,n)+k(构造)( Print a 1337-string)Educational Codeforces Round 70 (Rated for Div. 2)

    题目链接:https://codeforc.es/contest/1202/problem/D 题意: 给你一个数 n ( <=1e9 ),让你构造137713713.....(只含有1,3,7 ...

  10. # Clion复制提示信息

    Clion复制提示信息 windows: 按着alt 左键点击错误信息(按键点击同时进行) mac:按着option 左键点击错误信息 搞定