题目描述

Ali has taken the Computer Organization and Architecture course this term. He learned that there may be dependence between instructions, like WAR (write after read), WAW, RAW.

If the distance between two instructions is less than the Safe Distance, it will result in hazard, which may cause wrong result. So we need to design special circuit to eliminate hazard. However the most simple way to solve this problem is to add bubbles (useless operation), which means wasting time to ensure that the distance between two instructions is not smaller than the Safe Distance.

The definition of the distance between two instructions is the difference between their beginning times.

Now we have many instructions, and we know the dependent relations and Safe Distances between instructions. We also have a very strong CPU with infinite number of cores, so you can run as many instructions as you want simultaneity, and the CPU is so fast that it just cost 1ns to finish any instruction.

Your job is to rearrange the instructions so that the CPU can finish all the instructions using minimum time.

Input

The input consists several testcases.

The first line has two integers N, M (N <= 1000, M <= 10000), means that there are N instructions and M dependent relations.

The following M lines, each contains three integers X, Y , Z, means the Safe Distance between X and Y is Z, and Y should run after X. The instructions are numbered from 0 to N - 1.

Output

Print one integer, the minimum time the CPU needs to run.

样例

Sample Input

5 2

1 2 1

3 4 1

Sample Output

2

Hint

In the 1st ns, instruction 0, 1 and 3 are executed;

In the 2nd ns, instruction 2 and 4 are executed.

So the answer should be 2.

分析

这道题至少有两种方法

拓扑排序

第一种方法就是拓扑排序

显然没有任何约束的指令可以在第一秒同时执行。

对有一个或多个约束指令我们要满足最远的那个约束之后

定义dp[i],表示执行指令i的最早时间,则有:dp[i]=max(dp[i],dp[j]+a[j][i]),a[j][i]表示i必须在j执行后a[j][i]秒后执行。

临界没有任何约束的指令在第一秒时执行,dp[]=1

阶段很明显,当前入度为0点,下个阶段为这些点的临界点。

代码

#include <bits/stdc++.h>
const int maxn=1000+5,maxm=1e4+5;
struct Node{int to;int dis;int next;}e[maxm];
int n,m,len,head[maxn],rd[maxn],dp[maxn];
void Insert(int x,int y,int z){
e[++len].to=y;e[len].dis=z;e[len].next=head[x];head[x]=len;
}
void Kahn(){
std::stack<int> q;
for(int i=0;i<n;++i){
if(!rd[i])q.push(i),dp[i]=1;
else dp[i]=0;
}
int ans=1;
while(!q.empty()){
int u=q.top();q.pop();
for(int i=head[u];i;i=e[i].next){
int v=e[i].to,w=e[i].dis;rd[v]--;
dp[v]=std::max(dp[v],dp[u]+w);
ans=std::max(ans,dp[v]);
if(!rd[v])q.push(v);
}
}
printf("%d\n",ans);
}
void Solve(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(head,0,sizeof(head));
memset(rd,0,sizeof(rd));
len=0;
for(int i=1;i<=m;++i){
int x,y,z;scanf("%d%d%d",&x,&y,&z);
Insert(x,y,z);rd[y]++;
}
Kahn();
}
}
int main(){
Solve();
return 0;
}

最长路

其实细细思考一下,建一个超级源点跑最长路也是可以的

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int maxd=1005,maxb=20005;
int ru[maxd],chu[maxd];
int head[maxd],tot=1;
int n,m;
struct asd{
int from,to,next,val;
}b[maxb];
void ad(int aa,int bb,int cc){
b[tot].from=aa;
b[tot].to=bb;
b[tot].next=head[aa];
b[tot].val=cc;
head[aa]=tot++;
}
bool vis[maxd];
int dis[maxd];
void SPFA(){
queue<int> q;
q.push(n);
for(int i=0;i<maxd;i++){
dis[i]=-0x3f3f3f3f;
}
dis[n]=0;
while(!q.empty()){
int xx=q.front();
q.pop();
vis[xx]=0;
for(int i=head[xx];i!=-1;i=b[i].next){
int u=b[i].to;
if(dis[u]<dis[xx]+b[i].val){
dis[u]=dis[xx]+b[i].val;
if(!vis[u])q.push(u),vis[u]=1;
}
}
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
memset(&b,0,sizeof(struct asd));
memset(ru,0,sizeof(ru));
memset(chu,0,sizeof(chu));
tot=1;
for(int i=1;i<=m;i++){
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
ad(aa,bb,cc);
ru[bb]++;
chu[aa]++;
}
for(int i=0;i<n;i++){
if(ru[i]==0){
ad(n,i,1);
}
}
SPFA();
int ans=1;
for(int i=0;i<n;i++){
ans=max(ans,dis[i]);
}
printf("%d\n",ans);
}
return 0;
}

Instrction Arrangement UDH 4109 拓扑排序 or 最长路的更多相关文章

  1. 2017 ACM-ICPC(乌鲁木齐赛区)网络赛 H.Skiing 拓扑排序+最长路

    H.Skiing In this winter holiday, Bob has a plan for skiing at the mountain resort. This ski resort h ...

  2. [模板]tarjan缩点+拓扑排序

    题目:给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 题目简述:先t ...

  3. BZOJ 1194 [HNOI2006]潘多拉的盒子 (图论+拓扑排序+tarjan)

    题面:洛谷传送门 BZOJ传送门 标签里三个算法全都是提高组的,然而..这是一道神题 我们把这道题分为两个部分解决 1.找出所有咒语机两两之间的包含关系 2.求出咒语机的最长上升序列 我们假设咒语机$ ...

  4. 2018.11.06 bzoj1093: [ZJOI2007]最大半连通子图(缩点+拓扑排序)

    传送门 先将原图缩点,缩掉之后的点权就是连通块大小. 然后用拓扑排序统计最长链数就行了. 自己yyyyyy了一下一个好一点的统计方法. 把所有缩了之后的点都连向一个虚点. 然后再跑拓扑,这样最后虚点的 ...

  5. BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  6. 【CSP模拟赛】益智游戏(最短路(DJSPFA)&拓扑排序)

    题目描述 小P和小R在玩一款益智游戏.游戏在一个正权有向图上进行. 小P 控制的角色要从A 点走最短路到B 点,小R 控制的角色要从C 点走最短路到D 点. 一个玩家每回合可以有两种选择,移动到一个相 ...

  7. HDU 4109 Instrction Arrangement

    题目链接:https://vjudge.net/problem/HDU-4109 题目大意 有 N 个指令,标号从 0 ~ N - 1,和 M 个指令间的先后关系,每个关系都有一个权值 w,表示后一个 ...

  8. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  9. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

随机推荐

  1. Linux命令总结大全,包含所有linux命令

    使用说明:此文档包含所有的Linux命令,只有你想不到的没有你看不到的,此文档共计10万余字,有8400多行,预计阅读时间差不多需要3个小时左右,所以要给大家说一说如何阅读此文档 为了方便大家阅读,我 ...

  2. 小师妹学JavaIO之:NIO中Channel的妙用

    目录 简介 Channel的分类 FileChannel Selector和Channel DatagramChannel SocketChannel ServerSocketChannel Asyn ...

  3. IE6、IE7兼容querySelectorAll和querySelector方法

    querySelector 和 querySelectorAll 方法是 W3C Selectors API 规范中定义的.他们的作用是根据 CSS 选择器规范,便捷定位文档中指定元素. 目前几乎主流 ...

  4. java中的引用类型:强软弱虚

    java中的引用类型共4种:强软弱虚,具体每种类型的特点和应用场景.记录下.本文是看了马士兵老师的视频后记录整理的.加深印象. 基本概念 1. 强引用 强引用是使用最普遍的引用.如果一个对象具有强引用 ...

  5. Linux系统管理——初学者建议

    学习Linux的注意事项(一) Linux严格区分大小写 Linux是严格区分大小写的,这一点和Windows不一样,所以操作时要注意区分大小写的不同,包括文件名和目录名.命令.命令选项.配置文件配置 ...

  6. 多线程高并发编程(10) -- ConcurrentHashMap源码分析

    一.背景 前文讲了HashMap的源码分析,从中可以看到下面的问题: HashMap的put/remove方法不是线程安全的,如果在多线程并发环境下,使用synchronized进行加锁,会导致效率低 ...

  7. PowerApps Component Framework PCF 部署

    PowerApps PCF 可以满足复杂的功能, 我们可以使用PCF来创建复杂的PowerApps. 这里附上微软的package code componet 教程(https://docs.micr ...

  8. log报错的原因解决

    idea未装lombok的插件: 1.用快捷键Ctrl+Alt+S打开:Settings→Plugins→Browse repositories 2.输入lom后选择Install,安装插件 3.按照 ...

  9. 初识Redis的数据类型HyperLogLog

    前提 未来一段时间开发的项目或者需求会大量使用到Redis,趁着这段时间业务并不太繁忙,抽点时间预习和复习Redis的相关内容.刚好看到博客下面的UV和PV统计,想到了最近看书里面提到的HyperLo ...

  10. Java 源码刨析 - String

    [String 是如何实现的?它有哪些重要的方法?] String 内部实际存储结构为 char 数组,源码如下: public final class String implements java. ...