[知也无涯]GAN对人脸算法的影响】的更多相关文章

红绣被,两两间鸳鸯.不是鸟中偏爱尔,为缘交颈睡南塘.全胜薄情郎. 看到一篇GAN对人脸图像算法的影响,决心学习一个. 人脸检测 这也是我最关注的模块.文章推荐了极小面部区域人脸识别Finding tiny faces in the wild with generative adversarial network 遮挡人脸恢复与姿态仿真 姿态仿真其实和遮挡人脸是一类问题,就是对非规则化的输入进行判断.文章推荐了Towards large-pose face frontalization in th…
一.简介 人脸识别已经成为计算机视觉领域中最热门的应用之一,其中,人脸信息处理的第一个环节便是人脸检测和人脸跟踪.人脸检测是指在输入的图像中确定所有人脸的位置.大小和姿势的过程.人脸跟踪是指在图像序列中确定各帧间人脸的对应关系的过程,即确定每个人脸的运动轨迹及其大小变化的过程. 人脸跟踪最初的应用源于人类识别.人脸识别是指将输入的人脸图像与已知人脸库中的模型进行比较,以确定是否存在相匹配的人脸.随着近几年信息化进程日益加快,安全认证系列应用的涌现,这使得高度自动化的人脸识别系统的研究成为一个热点…
源地址:http://www.thinkface.cn/thread-3704-1-6.html 人脸对齐包括两个部分,分别为训练部分和测试部分.所有的代码基于opencv2.0.(一)训练阶段Step1:样本的准备:本文采用了IMM人脸数据库作为训练集,样本大小为640x480大小的彩色人脸图片,并手工对每个样本进行手工特征点标注.Step2:样本预处理:(包括光照.尺度归一化等)先进行尺度归一化操作,步骤如下:1)从训练样本中选取一个比较正的人脸最为参考人脸.2)将所有的训练样本对齐参考人脸…
本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模型分析与压缩.html github项目:https://github.com/miaoerduo/dlib-face-landmark-compression 人脸关键点检测的技术在很多领域上都有应用,首先是人脸识别,常见的人脸算法其实都会有一步,就是把人脸的图像进行对齐,而这个对齐就是通过关键点…
本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans>.为了方便,文中论文索引位置保持不变,方便直接去原文中找参考文献. 近些年深度卷积神经网络的发展将各种目标检测和识别问题大大的向前推进了不少.这同时也得益于大量的标注数据集和GPU的使用,这些方面的发展使得在无限制的图片和视频中理解人脸,自动执行诸如人脸检测,姿态估计,关键点定位和人脸识别成为了可能.本…
前言 在去年十月的时候参加了一个小比赛,做了一个人脸识别程序并很意外地获得省里面的一等奖,视频演示链接在这里,有同学想要做这方面的毕业设计or课程设计,发一篇博客来分享一下当时的开发过程. 视频演示链接 Github链接 项目简介 可以看一下我的这个博客 开发流程 一:安装Dlib的环境 这部分有点麻烦,不论是Windows还是linux,我都花了一段时间去配置,部分python依赖包需要连接外网才能顺利下载下来,这部分就靠自己摸索吧,多试试就可以成功了! Windows版参考链接1 Linux…
1 排序 排序基本信息 稳定性:排序前大的数在排序后,大的数依然保持不变就是稳定排序,反之不稳定 内外排序:根据待排序的记录是否放在内存里面区分的.诸如:插入排序(直接插入&希尔).交换排序(冒泡&快排).选择排序(简单选择&堆排).归并排序(归并). 算法性能影响:时间性能.辅助空间.算法复杂性(算法本身的复杂度跟时间复杂度区分开). 简单算法:冒泡排序.简单选择排序.直接插入排序 改进算法:希尔排序(不稳定).堆排序(不稳定).归并排序.快排(不稳定) 总之:排序四大类,简单有…
LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响) D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC) LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词): 对每个D中的文档d…
本文汇总了全球范围内提供基于Web服务的人脸检测和识别的API,便于网络中快速部署和人脸相关的一些应用. 1:从How-old的火爆说起 最开始,网站的开发者只是给一个几百人的群发送email,请他们试用一下并给一些反馈,本来期望至少有50人会响应,结果几个小时内超过了35000人试用,于是他们shocked.试想一下,如果一个本不知名的网站,由于类似功能开发合理,打动了消费者,那可以带来非常多的用户. 他们总结这主要得益于3点:1)利用 Project Oxford 识别图片中人物的性别和年龄…
网络流 转载自:http://www.cnblogs.com/luweiseu/archive/2012/07/14/2591573.html 在上一章中我们讨论的主题是图中顶点之间的最短路径,例如公路地图上两地点之间的最短路径,所以我们将公路地图抽象为有向带权图.本章我们将对基于有向带权图的模型做进一步扩展. 很多系统中涉及流量问题,例如公路系统中车流量,网络中的数据信息流,供油管道的油流量等.我们可以将有向图进一步理解为“流网络”(flow network),并利用这样的抽象模型求解有关流量…
tarjan算法是在dfs生成一颗dfs树的时候按照访问顺序的先后,为每个结点分配一个时间戳,然后再用low[u]表示结点能访问到的最小时间戳 以上的各种应用都是在此拓展而来的. 割点:如果一个图去掉某个点,使得图的连通分支数增加,那么这个点就是割点 某个点是割点,当且仅当这个点的后代没有连回自己祖先的边.即low[v] >= dfn[u]     , v是u的后代 需要注意的是根结点的特判,因为根结点没有祖先,根结点是割点,当且仅当根结点有两个以上的儿子. 问题:重边对该算法有影响吗?没有影响…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:周景超 在上一期中介绍了我们团队部分已公开的国际领先的研究成果,近期我们有些新的成果和大家进一步分享. 1 人脸进展 人脸是最重要的视觉信息之一.以貌识人.以貌取人是人的本性,也是最自然.最常用的身份确认和交互方式之一.互联网和移动互联网上每天上传和传播的天文数字级别的照片中有很大一部分都是和人脸相关的(比如国际知名互联网公司Facebook每天都有亿级以上的海量人脸照片和视频上传),因此人脸检测与识别技术在学术界和工业界都备受关注…
写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 这一节内容可能会用到的库文件有 Sort 和 SortData,同样在 Github 上可以找到. 善用 Ctrl + F 查找题目. 习题&题解 2.1.1 解答 2.1.2 解答 最多会被交换 n 次,只要将一个有序数列循环右移一位就可以构造这样的情况. 例如: 平均每个元素被交换了 N/N=1 次.(总共 N 个元素,总共…
把网上的AStar算法的论述自己实现了一遍,一开始只是最基础的实现.当然,现在AStar算法已经演变出了各种优化的版本,这篇也会基于各种优化不断的更新. 如果对算法不熟悉可以看下Stanford的这篇文章,我觉得是讲解的十分仔细的了:http://theory.stanford.edu/~amitp/GameProgramming/,也附上国内的翻译:http://blog.csdn.net/coutamg/article/details/53923717 讲讲我对上面这篇文章的理解: (1)A…
原文链接https://www.cnblogs.com/luweiseu/archive/2012/07/14/2591573.html 作者:wlu 7. 网络流算法--Ford-Fulkerson方法及其多种实现   网络流 在上一章中我们讨论的主题是图中顶点之间的最短路径,例如公路地图上两地点之间的最短路径,所以我们将公路地图抽象为有向带权图.本章我们将对基于有向带权图的模型做进一步扩展. 很多系统中涉及流量问题,例如公路系统中车流量,网络中的数据信息流,供油管道的油流量等.我们可以将有向…
\(PollardRho\) 算法总结: Pollard Rho是一个非常玄学的算法,用于在\(O(n^{1/4})\)的期望时间复杂度内计算合数n的某个非平凡因子(除了1和它本身以外能整除它的数).事实上算法导论给出的是\(O(\sqrt p)\),\(p\)是\(n\)的某个最小因子,满足\(p\)与\(n/p\)互质.但是这些都是期望,未必符合实际.但事实上Pollard Rho算法在实际环境中运行的相当不错. 一些与\(PollardRho\) 算法经常一起考的东西: 快速乘 Mille…
本文转自: https://mp.weixin.qq.com/s?__biz=MzA5MDMwMTIyNQ==&mid=2649290778&idx=1&sn=9816b862e167c4792f4251c199fcae16&chksm=8811ee5cbf66674a54e87bc3cef4937da6e5aac7599807754731ab777d359b219ac6de97616e&mpshare=1&scene=2&srcid=0219a2e…
在大多与编程语言中,代码的执行时间大部分消耗在循环中,是提升性能必须关注的要点之一 循环的类型 for循环(它由四部分组成:初始化.前测条件.后执行体.循环体.) for(var i = 0; i < 10; i++){ doSomething(); } 可以将 var 改成 let 因为 var i会创建一个函数级/全局变量. while循环(while循环是最简单的循环,由前测条件和循环体组成.) var i = 0; while(i < 10) { doSomething(); i++;…
<Algorithms算法>笔记:元素排序(3)——洗牌算法 Algorithms算法笔记元素排序3洗牌算法 洗牌算法 排序洗牌 Knuth洗牌 Knuth洗牌代码 洗牌算法 洗牌的思想很简单,就是像洗扑克牌一样,对一组数据进行随机打乱,这个算法在很多应用里都非常有用,特别是对于后面需要介绍的快排来说,这个算法直接影响了快排的效率. 洗牌的算法这里提了2种 排序洗牌 思想很简单,先对每个元素生成一个随机数,然后对这些随机数进行排序 排序前 排序后 Knuth洗牌 一个更简单的算法,不用sort…
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘. GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative Adversarial Network,就是大家耳熟能详的GAN,由Ian Goodfellow首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由GAN做出来.我最近刚入门GAN,看了些资料,做一些笔记. 1.Generati…
算法(第四版)C#题解——2.1   写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 这一节内容可能会用到的库文件有 Sort 和 SortData,同样在 Github 上可以找到. 善用 Ctrl + F 查找题目. 习题&题解 2.1.1 题目 按照算法 2.1 所示轨迹的格式给出选择排序是如何将数组 E A S Y Q U E S T I O N 排序的. 解答 2.…
介绍 论文名: "classification, ranking, and top-k stability of recommendation algorithms". 本文讲述比較推荐系统在三种情况下, 推荐稳定性情况. 与常规准确率比較的方式不同, 本文从还有一个角度, 即推荐算法稳定性方面进行比較. 具体 參与比較的推荐算法 包含: baseline 传统基于用户 传统基于物品 oneSlope svd 比較方式 比較的过程分为两个阶段: 阶段一, 将原始数据分为两个部分, 一部…
转载自:https://blog.csdn.net/baidu_38197452/article/details/77115935 基于LED的室内定位算法大致可以分为四类: 1. 几何测量法 这种方法需要估计接收端到己知LED灯的几何关系(距离或角度信息等),再通过计算获取待定位点的位置坐标.根据几何关系获取的信息,-般有RSS三边定位.AOA角度定位和TDOA双曲线定位等. 2. 场景分析法 送类定位算法又称为指纹定位法它通过分析场景中的特征来估计终端的坐标.一般分为两个阶段,离线数据库建立…
主要机器学习算法的project适用性分析 前段时间AlphaGo跟李世石的大战及相关的深度学习的新闻刷了一遍又一遍的朋友圈.只是这件事情,也仅仅是在机器学习的深度上进一步拓展,而机器学习的广度(也即project化实践)上,仍然没有什么突破性的理论或实践,用的领域继续用,不用的领域依旧不用. project性分析的作用 project上的琐事 机器学习的使命是使计算机强大的运算能力和存储能力转化为推演能力.能转化是一方面.转化的效率则是还有一方面.科研性质的AlphaGo,拥有近乎无限的计算资…
一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影. OpenCV 起始于 1999 年 Intel 的一个内部研究项目.从那时起,它的开发就一直很活跃.进化到现在,它已支持如 OpenCL 和 OpenGL 等现代技术,也支持如 iOS 和 Android 等平台. 199…
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以往病人体内的肿瘤状况,红色是良性肿瘤.蓝色是恶性肿瘤.显然这与发现时间的早晚以及肿瘤大小有密不可分的关系,那么当再来一个病人,我怎么根据时间的早晚以及肿瘤大小推断出这个新的病人体内的肿瘤(图中的绿色)是良性的还是恶性的呢? k近邻的思想便可以在这里使用,我根据距离(至于距离是什么样的距离,我们后面会…
原文 LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响) D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC) LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词): 对每个D中的…
https://juejin.im/post/5d3fb44e6fb9a06b2e3ccd4e 生成对抗网络(GAN)是生成模型的一种神经网络架构. 生成模型指在现存样本的基础上,使用模型来生成新案例,比如,基于现存的照片集生成一组与其相似却有细微差异的新照片. GAN是使用两个神经网络模型训练而成的一种生成模型.其中一个称为"生成器"或"生成网络"模型,可学习生成新的可用案例.另一个称为"判别器"或"判别网络",可学习判别生…
#K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import pandas as pd import tensorflow as tf conn=cx_Oracle.connect('doctor/admin@localhost:1521/tszr') cursor = conn.cursor() #获取数据集 def getdata(surgery,surg…
//2019.08.03晚#k-近邻算法的拓展思考与总结1.k-近邻算法是一种非常典型的分类监督学习算法,它可以解决多分类的问题:另外,它的整体思想简单,效果强大.它也可以用来解决回归问题,使用的库函数为KNeighborsRegressor 2.k-近邻算法虽然可以很好地解决多分类问题,但是它也有很多的缺点,具体主要有以下几个方面:(1)效率低下:对于每一个预测数据都需要O(mxn)的时间复杂度,可以对其利用树结构进行优化,不过即使优化之后其效率也是比较低下的:(2)高度数据相关:一旦数据中存…