【转载】使用pandas进行数据清洗】的更多相关文章

使用pandas进行数据清洗 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull()&notnull() dropna() fillna() 数据间的空格 查看数据中的空格 去除数据中的空格 大小写转换 数据中的异常和极端值 replace() 更改数据格式 astype() to_datetime() 数据分组 cut() 数据分列 split()…
在<用pandas进行数据清洗(一)(Data Analysis Pandas Data Munging/Wrangling)>中,我们介绍了数据清洗经常用到的一些pandas命令. 接下来看看这份数据的具体清洗步骤: Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price 0 1 2010-08-21 2 1 30 30 1 2 2011-05-26 4 1 40 40 2 3 2011-06-16…
数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处理重复的数据 5. 处理异常的数据 6. 级联 7. 合并操作 1. 处理丢失的数据 两种丢失的数据: 种类 None:None是对象类型,type(None):NoneType np.nan(NaN):是浮点型,type(np.nan):float 两种丢失数据的区别: object类型比floa…
本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull()&notnull() dropna() fillna() 数据间的空格 查看数据中的空格 去除数据中的空格 大小写转换 数据中的异常和极端值 replace() 更改数据格式 astype() to_datetime() 数据分组 cut() 数据分列 split() 数据清洗是一项复杂且繁琐(ku…
这里利用ben的项目(https://github.com/ben519/DataWrangling/blob/master/Python/README.md),在此基础上增添了一些内容,来演示数据清洗的主要工作. 以下是一份简单的交易数据,包括交易单号,交易日期,产品序号,交易数量,单价,总价. 准备工作:导入pandas import pandas as pd 读取数据: pd.read_excel(), pd.read_csv(), pd.read_json(), pd.read_sql(…
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式匹配 NaN值匹配模式 Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能.与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式. 其中inner为默认的匹配模式.本篇文章我们将介绍m…
Abstract During the course fo doing data analysis and modeling, a significant amount of time is spend on data preparation: loading, cleaning, transforming, and rearrangin. 在整个数据分析建模过程中, 大量的时间(80%)的时间是用在了数据的预处理中, 如数据清洗, 加载, 标准化, 重塑等. Such tasks are of…
pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和.均值.最小值.最大值等,我们来具体看看这些函数: 1.随机生成三组数据import numpy as npimport pandas as pd np.random.seed(1234)d1 = pd.Series(2*np.random.normal(size = 100)+3)d2 = np.random.f(2,4,size = 100)d3 = np.random.randint(1,100,size = 100)12…
原始文章链接: https://towardsdatascience.com/how-to-make-your-pandas-loop-71-803-times-faster-805030df4f06 一.前言 如果你使用Python和Pandas进行数据分析,循环是不可避免要使用的.然而,即使对于较小的DataFrame来说,使用标准循环也是非常耗时的,对于较大的DataFrame来说,你懂的.今天,公众号为大家分享一个关于Pandas提速的小攻略,助你一臂之力! 二. 标准循环 Datafr…
原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 二.文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', '…