可以發現每個點經過次數恰好等於這個點的度數,所以把點權下放邊權,跑最小生成樹,原來邊權乘二在加上兩端點權,答案再加一遍起點最小點權 #include<bits/stdc++.h> #define ll long long using namespace std; ; ; int n,m; ll ans; struct node{ int u,v,w,nxt; bool operator <(const node&a)const{ return w<a.w; } }e[max…
一道好題不出所料又抄的題解 1.首先對於這張圖肯定要考慮走哪些邊不走哪些邊,發現我們想要的肯定那些邊權最大的邊,所以想到最大生成樹 這樣能保證選到盡量大的邊 2.跑完最大生成樹后每兩點之間就有唯一路徑了,想要知道兩點間最小邊權,可以在LCA過程中求出(我竟然不會LCA),對lca做些許改動 #include<bits/stdc++.h> using namespace std; ; ; struct node1{ int u,v,w; }e1[maxm]; struct node2{ int…
首先考虑最小生成树的模型,唯一不同的是第二种情形. 即“三个或三个以上的城市申请修建的公路成环” 考虑该情形,因为修路的申请是申请离它最近的城市,所以上述条件实质上为 “存在三个或三个以上的城市,他们两两间的最近城市连起来成环” 而题目保证有唯一解,所以第二种不存在 double的5000*5000開不下,所以在prim時用到哪條邊算哪條邊 寫掛了調不出來所以複製了題解......…
目录 1 问题描述 2 解决方案   1 问题描述 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性.你首先要决定那些道路是需要保留的N-1条道路.第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间.没有两个牧场是被一…
前言:[數據刪除] 來源:題解 不發題面了 首先我们来分析题目,“每个垃圾都可以用来吃或堆放”,浓浓的透露出一个背包气息.我们可以类比背包问题的放或不放.于是dp[i][j]dp[i][j]dp[i][j]描述为处理前i个物品的某状态j,那么状态j代表什么呢? 我们可以继续分析题目并使用排除法 分析题目,我们需要求的答案是时间,于是很自然而然的想到j描述高度或生命,而dp数组存放时间.很显然,这样状态既不完整,也写不出转移方程.而且dp数组存的是当前状态下最大或最小的价值,似乎也不满足. 这时候…
1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 612  Solved: 431[Submit][Status] Description Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1..N. 每一个牧场都是一个奶牛的家. FJ计划除去P(N-1 <= P <=…
區間dp 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电.他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯.开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来…
1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 578  Solved: 403[Submit][Status] Description Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1..N. 每一个牧场都是一个奶牛的家. FJ计划除去P(N-1 <= P <=…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4883 [题目大意] 在一个n*m的棋盘上要放置若干个守卫. 对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说, 每列必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的, 且每个位置最多只能放置一个守卫,一个守卫不能同时兼顾行列的防御. 请计算控制整个棋盘的最小代价. [题解] 我们将每行和每列看成一个点,用每个格子上的点的权值作为边, 这就构成了一个n+m个点的图…
尺取法a掉 然而數學解法為 等差數列求和公式: sum(L,R)=(L+R)(R-L+1)/2=M 即(L+R)(R-L+1)=2M 可以把2M分解成两个数之积,假设分成了两个数K1,K2,且K1<K2时, 可以列一个二元一次方程组 R-L+1=K1 L+R=K2 解得L=(K2-K1+1)/2, R=(K1+K2-1)/2 当K1,K2一奇一偶时,L,R才有自然数解. 不过有一种特殊情况,就是L=R的情况,这种情况是不允许的 即(K2-K1+1)/2≠(K1+K2-1)/2,解得K1≠1 尺取…