Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 上一道题的延伸版,就是直接求出第k行的数,要求用o(k)的空间复杂度. 也是直接相加就可以了. public class Solution { pub…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 118. Pascal's Triangle 的拓展,给一个索引k,返回杨辉三角的第k行. 解法:题目要求优化到 O(k) 的空间复杂,那么就不能把每…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3,3,1]. 解题思路: 注意,本题的k相当于上题的k+1,其他照搬即可,JAVA实现如下: public List<Integer> getRow(int rowIndex) { List<Integer> alist=new ArrayList<Integer>();…
题目描述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. 解题思路: 每次在上一个list前面插入1,然后后面的每两个间相加赋值给前一个数. 代码描述: public class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> r…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 题目标签:Array 这道题目与之前那题不同的地方在于,之前是给我们一个行数n,让我们把这几行的全部写出来,这样就可以在每写新的一行的时候根据之前的那…
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input: 3 Output: [1,3,3,1…
Problem: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? Summary: 返回杨辉三角(帕斯卡三角)的第k行. Solution: 1. 若以二维数组的形式表示杨辉三角,则可轻易推算出ro…
题目是: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? (注意:这里要求空间为O(k)) 一个满足条件的答案如下: public class Solution { public IList<int…
杨辉三角,这次要输出第rowIndex行 用滚动数组t进行递推 t[(i+1)%2][j] = t[i%2][j] + t[i%2][j - 1]; class Solution { public: vector<int> getRow(int rowIndex) { ) ,); int n = rowIndex; vector<]; ; i < ; ++i){ t[i].resize(n + , ); } ; i <= n; ++i){ ; j < i; ++j){…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? [思路] 我们为了满足空间复杂度的要求,我们新建两个ArrayList,一个负责存储上一个Pascal行的结果,一个根据上一个Pascal行得出当前P…