前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个queue:x(i)的特征维度是 n , 参数 θ 是一个 n×k 的矩阵,输出的结果 y(i) 为一个 k×1 的向量,其中第 j 个元素对应元素的 e 指数为该 queue 属于第 j 类的概率(未归一化).所以虽然损失函数 J(θ) 是一个常数,但是它的自变量为一个矩阵 Θ 和 一个特征向量 x(…
1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid ​ 首先我们来画出指数函数的基本图形: ​ 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: ​ ​ 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
怎么样计算偏导数来实现logistic回归的梯度下降法 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法 接下来开始学习logistic回归的梯度下降法 logistic回归的公式 现在只考虑单个样本的情况,关于该样本的损失函数定义如上面第三个公式,其中a是logistic回归的输出,y是样本的基本真值标签值, 下面写出该样本的偏导数流程图 假设样本只有两个特征x1和x2 为了计算Z,我们需要输入参数w1和w2和b 因此在logistic回归中,我们要做的就是变换参数w…
来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任…
在上一篇中提到的Logistic回归是利用最大似然概率的思想和梯度上升算法确定θ,从而确定f(θ).本篇将介绍还有一种求解最大似然概率ℓ(θ)的方法,即牛顿迭代法. 在牛顿迭代法中.如果一个函数是,求解θ值使得f(θ)=0. 在图1中可知, 图1 选择一个点,相应函数值为,并将相应的切线与x轴相交的点记为,所以 ,依此类推可知牛顿迭代规律. 为了求得最大似然概率ℓ(θ).让,所以牛顿迭代方法确定最大似然概率的公式为: 在Logistic回归中,θ是一个向量. 因此公式可表示为: H是一个n*n的…
来自:http://deeplearning.net/software/theano/tutorial/gradients.html Derivatives in Theano 一.计算梯度 现在,让我们使用theano来做稍微更复杂的任务:创建一个函数,用来计算表达式y 关于它的参数x的导数.我们将会用到宏 T.grad .例如,我们可以计算  关于 的梯度.注意: . 下面就是用来计算这个梯度的代码: >>> from theano import pp >>> x…
参考: https://blog.csdn.net/qian99/article/details/78046329…
2.2 logistic回归损失函数(非常重要,深入理解) 上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的,希望通过训练集找到参数w和b,来得到自己得输出 对训练集当中的值进行预测,将他写成y^(I)我们希望他会接近于训练集当中的y^(i)的数值 现在来看一下损失函数或者叫做误差函数 他们可以用来衡量算法的运行情况 可以定义损失函数为y^和y的差…
上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的,希望通过训练集找到参数w和b,来得到自己得输出 对训练集当中的值进行预测,将他写成y^(I)我们希望他会接近于训练集当中的y^(i)的数值 现在来看一下损失函数或者叫做误差函数 他们可以用来衡量算法的运行情况 可以定义损失函数为y^和y的差,或者他们差的平方的一半,结果表明你可能这样做,但是实际当中…