目录 一.中文分词理论描述 二.算法描述 1.正向最大匹配算法 2.反向最大匹配算法 3.双剑合璧 三.案例描述 四.JAVA实现完整代码 五.组装UI 六.总结 前言 这篇将使用Java实现基于规则的中文分词算法,一个中文词典将实现准确率高达85%的分词结果.使用经典算法:正向最大匹配和反向最大匹配算法,然后双剑合璧,双向最大匹配. 一.中文分词理论描述 根据相关资料,中文分词概念的理论描述,我总结如下: 中文分词是将一个汉字序列切分成一个一个单独的词,将连续的字序列按照一定的规范重新组合成词…
原文:基于MMSeg算法的中文分词类库 最近在实现基于lucene.net的搜索方案,涉及中文分词,找了很多,最终选择了MMSeg4j,但MMSeg4j只有Java版,在博客园上找到了*王员外*(http://www.cnblogs.com/land/archive/2011/07/19/mmseg4j.html )基于Java版的翻译代码,但它不支持最新的Lucene.Net 3.0.3,于是基于它的代码升级升级到了最新版Lucene.Net (≥ 3.0.3),同时将其中大部分Java风格代…
中科院NLPIR中文分词java版 中科院NLPIR中文分词java版…
http://h2ex.com/1282 现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类语言的一种技术.在其中,分词技术是一种比较基础的模块.对于英文等拉丁语系的语言而言,由于词之间有空格作为词边际表示,词语一般情况下都能简单且准确的提取出来.而中文日文等文字,除了标点符号之外,字之间紧密相连,没有明显的词边界,因此很难将词提取出来.分词的意义非常大,在中文中,单字作为最基本的语义单位…
不像英文那样单词之间有空格作为天然的分界线, 中文词语之间没有明显界限.必须采用一些方法将中文语句划分为单词序列才能进一步处理, 这一划分步骤即是所谓的中文分词. 主流中文分词方法包括基于规则的分词,基于大规模语料库的统计学习方法以及在实践中应用最多的规则与统计综合方法. 隐马尔科夫模型(HMM)是中文分词中一类常用的统计模型, 本文将使用该模型构造分词器.关于HMM模型的介绍可以参见隐式马尔科夫模型. 方法介绍 中文分词问题可以表示为一个序列标注问题,定义两个类别: E代表词语中最后一个字 B…
最近碰到一个分词匹配需求--给定一个关键词表,作为自定义分词词典,用户query文本分词后,是否有词落入这个自定义词典中?现有的大多数Java系的分词方案基本都支持添加自定义词典,但是却不支持HDFS路径的.因此,我需要寻找一种简单高效的分词方案,稍作包装即可支持HDFS.MMSeg分词算法正是完美地契合了这种需求. 1. MMseg简介 MMSeg是蔡志浩(Chih-Hao Tsai)提出的基于字符串匹配(亦称基于词典)的中文分词算法.基于词典的分词方案无法解决歧义问题,比如,"武汉市长江大桥…
一.简介        针对现有中文分词在垂直领域应用时,存在准确率不高的问题,本文对其进行了简要分析,对中文分词面临的分词歧义及未登录词等难点进行了介绍,最后对当前中文分词实现的算法原理(基于词表.统计以及序列标注等算法)进行了简要阐述,并对比了现有技术的优缺点,并给出了本文作者在工程应用上的中文分词调优的经验分享. 二.引言        中文信息处理是指自然语言处理的分支,是指用计算机对中文进行处理.和大部分西方语言不同,汉语的词语之间没有明显的空格标记,句子是以字串的形式出现.常规来说,…
http://blog.csdn.net/guixunlong/article/details/8925990 从头开始编写基于隐含马尔可夫模型HMM的中文分词器之一 - 资源篇 首先感谢52nlp的系列博文(http://www.52nlp.cn/),提供了自然语言处理的系列学习文章,让我学习到了如何实现一个基于隐含马尔可夫模型HMM的中文分词器. 在编写一个中文分词器前,第一步是需要找到一些基础的词典库等资源,用以训练模型参数,并进行后续的结果评测,这里直接转述52nlp介绍的“中文分词入门…
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事实上还有特别多有趣的文本挖掘工作能够做.也是个知识发现的过程,以后有机会再学习下. ================================================== * 中文分词经常使用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Sm…
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断. 11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 /**  * 获取文本的所有分词结果, 对比不同分…