视觉里程计(Visual Odometry, VO),通过使用相机提供的连续帧图像信息(以及局部地图,先不考虑)来估计相邻帧的相机运动,将这些相对运行转换为以第一帧为参考的位姿信息,就得到了相机载体(假设统一的刚体)的里程信息. 初始化实例 在实例化跟踪器的时候会实例化一个初始化实例,有一些比较重要的参数需要注意下,看代码注释以及初始值,参数值也可以在yaml文件中自定义. // src/openvslam/module/initializer.h:83 //! max number of it…
在成功初始化之后,会创建地图以及局部地图. 创建地图 在初始化正常过后,紧接着会创建地图 // src/openvslam/module/initializer.cc:67 // create new map, then check the state is succeeded or not create_map_for_monocular(curr_frm); 创建单目地图 在init_matches_中,将所有匹配点对儿中没有三角化的位置标记为无效 以初始帧为原点,设置当前帧的位姿 创建初始…
参考尺度空间理论 金字塔 当用一个机器视觉系统分析未知场景时,计算机没有办法预先知道图像中物体尺度,因此,我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度.所以在很多时候,我们会在将图像构建为一系列不同尺度的图像集,在不同的尺度中去检测我们感兴趣的特征.比如:在Harr特征检测人脸的时候,因为我们并不知道图像中人脸的尺寸,所以需要生成一个不同大小的图像组成的金字塔,扫描其中每一幅图像来寻找可能的人脸. 图像金字塔化的一般步骤:首先,图像经过一个低通滤波器进行平滑(这个步骤会使图像变…
配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# # Camera Model # #==============# Camera.name: "EuRoC monocular" Camera.setup: "monocular" Camera.model: "perspective" # 相机内…
想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Camera Calibration"提出了基于单平面棋盘格的相机标定方法.该方法介于传统的标定方法和自标定方法之间,使用简单实用性强,有以下优点: 不需要额外的器材,一张打印的棋盘格即可. 标定简单,相机和标定板可以任意放置. 标定的精度高. 相机的内参数 设\(P=(X,Y,Z)\)为场景中的一点,在…
从现在开始下面两篇文章来介绍SLAM中的视觉里程计(Visual Odometry).这个是我们正式进入SLAM工程的第一步,而之前介绍的更多的是一些基础理论.视觉里程计完成的事情是视觉里程计VO的目标是根据拍摄的图像估计相机的位姿.目前主要有两个方法,我们这一篇介绍的是特征点法. 首先,我们之前提到了路标.SLAM中是根据路标的位置变化来估计自身的运动的.路标是三维空间中固定不变的点,应该有这么几个特征: 数量充足,以实现良好的定位 具有较好的区分性,以实现数据关联而图像的特征点可以比较好的满…
SLAM 主要分为两个部分:前端和后端,前端也就是视觉里程计(VO),它根据相邻图像的信息粗略的估计出相机的运动,给后端提供较好的初始值.VO的实现方法可以根据是否需要提取特征分为两类:基于特征点的方法,不使用特征点的直接方法. 基于特征点的VO运行稳定,对光照.动态物体不敏感. 图像特征点的提取和匹配是计算机视觉中的一个基本问题,在视觉SLAM中就需要首先找到相邻图像对应点的组合,根据这些匹配的点对计算出相机的位姿(相对初始位置,相机的旋转和平移). 本文对这段时间对特征点的学习做一个总结,主…
1. svo 源码:https://github.com/uzh-rpg/rpg_svo 国内对齐文章源码的研究: (1)冯斌: 对其代码重写 https://github.com/yueying/OpenMVO 对原理的一步步分析http://fengbing.net/ (2)白巧克力: 对文章的具体分析:http://blog.csdn.net/heyijia0327/article/details/51083398 2. svo+msf 文章:见我的分享http://pan.baidu.c…
相机成像的过程实际是将真实的三维空间中的三维点映射到成像平面(二维空间)过程,可以简单的使用小孔成像模型来描述该过程,以了解成像过程中三维空间到二位图像空间的变换过程. 本文包含两部分内容,首先介绍小孔成像模型的各种几何关系:接着描述了成像过程中的四种坐标系(像素坐标,图像坐标,相机坐标,世界坐标)的变换关系. 小孔成像模型 相机可以抽象为最简单的形式:一个小孔和一个成像平面,小孔位于成像平面和真实的三维场景之间,任何来自真实世界的光只有通过小孔才能到达成像平面.因此,在成像平面和通过小孔看到的…
在之前的博文OpenCV,计算两幅图像的单应矩阵,介绍调用OpenCV中的函数,通过4对对应的点的坐标计算两个图像之间单应矩阵\(H\),然后调用射影变换函数,将一幅图像变换到另一幅图像的视角中.当时只是知道通过单应矩阵,能够将图像1中的像素坐标\((u_1,v_1)\)变换到图像2中对应的位置上\((u_2,v_2)\),而没有深究其中的变换关系. 单应(Homography)是射影几何中的概念,又称为射影变换.它把一个射影平面上的点(三维齐次矢量)映射到另一个射影平面上,并且把直线映射为直线…