relu函数是否存在梯度消失问题以及relu函数的死亡节点问题 存在,在小于的时候,激活函数梯度为零,梯度消失,神经元不更新,变成了死亡节点. 出现这个原因可能是因为学习率太大,导致w更新巨大,使得输入数据在经过这个神经元的时候,输出值小于0,从而经过激活函数的时候为0,从此不再更新.所以relu为激活函数,学习率不能太大…
https://blog.csdn.net/danyhgc/article/details/73850546 什么是激活函数 为什么要用 都有什么 sigmoid ,ReLU, softmax 的比较 如何选择 1. 什么是激活函数 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function. 2. 为什么要用 如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合.如果使…
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$ : 标记序列 $\textbf y_{(1:T)}…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环神经网络,但是并没有涉及随时间反向传播(BPTT)算法如何计算梯度的细节.在这部分,我们将会简要介绍BPTT并解释它和传统的反向传播有何区别.我们也会尝试着理解梯度消失问题,这也是LSTM和GRU(目前NLP及其它领域中最为流行和有用的模型)得以发展的原因.梯度消失问题最早是由 Sepp Hochr…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
什么是梯度爆炸/梯度消失? 深度神经网络训练的时候,采用的是反向传播方式,该方式使用链式求导,计算每层梯度的时候会涉及一些连乘操作,因此如果网络过深. 那么如果连乘的因子大部分小于1,最后乘积的结果可能趋于0,也就是梯度消失,后面的网络层的参数不发生变化. 那么如果连乘的因子大部分大于1,最后乘积可能趋于无穷,这就是梯度爆炸 如何防止梯度消失? sigmoid容易发生,更换激活函数为 ReLU即可. 权重初始化用高斯初始化 如何防止梯度爆炸? 1 设置梯度剪切阈值,如果超过了该阈值,直接将梯度置…
(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸. 原因:前面层上的梯度是来自于后面层上梯度的乘乘积.当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸. (2)梯度消失(vanishing gradient problem): 原因:例如三个隐层.单神经元网络: 则可以得到: 然而,sigmoid方程的导数曲线为: 可以看到,sigmoid导数的最大值为1/4,通常abs(w)<1,则: 前面的层比后面的层梯度变…
转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案.本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案.有基础的同鞋可以跳着阅读. 其中,梯度消失爆炸的解决方案主要包括以下几个部分. - 预训练加微调 - 梯度剪切.权重正则(针对梯度爆炸) - 使…
本宝宝又转了一篇博文,但是真的很好懂啊: 写在前面:知乎上关于lstm能够解决梯度消失的问题的原因: 上面说到,LSTM 是为了解决 RNN 的 Gradient Vanish 的问题所提出的.关于 RNN 为什么会出现 Gradient Vanish,上面已经介绍的比较清楚了,本质原因就是因为矩阵高次幂导致的.下面简要解释一下为什么 LSTM 能有效避免 Gradient Vanish. 对于 LSTM,有如下公式 模仿 RNN,我们来计算 ,有 &lt;img src="https:…
1. 训练误差和泛化误差 机器学习模型在训练数据集和测试数据集上的表现.如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确.这是为什么呢? 因为存在着训练误差和泛化误差: 训练误差:模型在训练数据集上表现出的误差. 泛化误差:模型在任意⼀个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似. 训练误差的期望小于或等于泛化误差.也就是说,⼀般情况下,由训练数据集学到的模型参数会使模型在训练数据集上的表现优于或等于在测…