首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
pytorch生成对抗示例
】的更多相关文章
pytorch生成对抗示例
pytorch生成对抗示例 本文对ML(机器学习)模型的安全漏洞的认识,并将深入了解对抗性机器学习的热门话题.图像添加难以察觉的扰动会导致模型性能大不相同.通过图像分类器上的示例探讨该主题.使用第一种也是最流行的攻击方法之一,即快速梯度符号攻击算法(FGSM)来迷惑 MNIST 分类器. 1.威胁模型 对于上下文,有许多类别的对抗性攻击,每种攻击具有不同的目标和对攻击者知识的假设.总体目标是向输入数据添加最少量的扰动,引起期望的错误分类.对攻击者的知识有几种假设,其中两种是:白盒子和黑盒子.白盒…
深度学习框架PyTorch一书的学习-第七章-生成对抗网络(GAN)
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter7-GAN生成动漫头像 GAN解决了非监督学习中的著名问题:给定一批样本,训练一个系统能够生成类似的新样本 生成对抗网络的网络结构如下图所示: 生成器(generator):输入一个随机噪声,生成一张图片 判别器(discriminator):判断输入的图片是真图片还是假图片 训练判别器D时,需要利用生成器G生成的假图片和来自现实世界的真图片:训练生成器时,只需要使用噪声生…
GAN实战笔记——第六章渐进式增长生成对抗网络(PGGAN)
渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGAN)--一种能够生成全高清的具有照片级真实感图像的前沿技术.这项技术在顶级机器学习会议ICLR2018上提出时引起了轰动,以至于谷歌立即将其整合为 TensorFlow Hub中的几个模型之一.这项技术被深度学习的鼻祖之一 Yoshua Bengio称赞为"好得令人难以置信",在其发布后,…
用MXNet实现mnist的生成对抗网络(GAN)
用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本.判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来.而生成网络则要尽可能地欺骗判别网络.两个网络相互对抗.不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真…
不到 200 行代码,教你如何用 Keras 搭建生成对抗网络(GAN)【转】
本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Networks,GAN)最早由 Ian Goodfellow 在 2014 年提出,是目前深度学习领域最具潜力的研究成果之一.它的核心思想是:同时训练两个相互协作.同时又相互竞争的深度神经网络(一个称为生成器 Generator,另一个称为判别器 Discriminator)来处理无监督学习的相关问题.在训…
知物由学 | AI网络安全实战:生成对抗网络
本文由 网易云发布. “知物由学”是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道.“知物由学”希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 作者:Brad Harris,安全研究员,Brad曾在公共和私营部门的网络和计…
【超分辨率】—(ESRGAN)增强型超分辨率生成对抗网络-解读与实现
一.文献解读 我们知道GAN 在图像修复时更容易得到符合视觉上效果更好的图像,今天要介绍的这篇文章——ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,它 发表于 ECCV 2018 的 Workshops,作者在 SRGAN 的基础上进行了改进,包括改进网络的结构.判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络. 超分辨率生成对抗网络(SRGAN)是一项开创性的工作,能够在单一图像超分辨率中生成逼…
科普 | 生成对抗网络(GAN)的发展史
来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命.这场革命产生了一些重大的技术突破.Ian Goodfellow等人在"Generative Adversarial Networks"中提出了生成对抗网络.学术界和工业界都开始接受并欢迎GAN的到来.GAN的崛起不可避免. 首先,GAN最厉害的地方是它的学习性质是无监督的.GA…
生成对抗网络GAN介绍
GAN原理 生成对抗网络GAN由生成器和判别器两部分组成: 判别器是常规的神经网络分类器,一半时间判别器接收来自训练数据中的真实图像,另一半时间收到来自生成器中的虚假图像.训练判别器使得对于真实图像,它输出的概率值接近1,而对于虚假图像则接近0 生成器与判别器正好相反,通过训练,它输出判别器赋值概率接近1的图像.生成器需要产生更加真实的输出,从而欺骗判别器 在GAN中要同时使用两个优化器,分别用来最小化判别器和生成器的损失 Batch Normalization Batch Normalizat…
基于Jittor框架实现LSGAN图像生成对抗网络
基于Jittor框架实现LSGAN图像生成对抗网络 生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一.GAN模型由生成器(Generator)和判别器(Discriminator)两个部分组成.在训练过程中,生成器的目标就是尽量生成真实的图片去欺骗判别器.而判别器的目标就是尽量把生成器生成的图片和真实的图片分别开来.这样,生成器和判别器构成了一个动态的"博弈过程".许多相关的研究…