构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f[k+1,j]+x[k+1]-x[i]+y[k]-y[j]} (画一画就知道了) 然后显然满足四边形不等式(怎么就显然了??) #include<cstdio> #include<cstring> #include<algorithm> #include<vector…
链接http://poj.org/problem?id=1160 很好的一个题,涉及到了以前老师说过的一个题目,可惜没往那上面想. 题意,给出N个城镇的地址,他们在一条直线上,现在要选择P个城镇建立邮局,使得每个城镇到离他最近的邮局距离的总和尽量小. 首先提一个这个问题的简化版本,如果P=1得话,这个距离是多少呢? 这个问题的解就是将这个唯一的邮局建在(l+r)/2的位置,答案就是最优解, 这个类似于中位数的概念,我们有一个数学归纳法简单的证明 数轴上有n个点,求到这n个点距离最小的一个点   …
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价. 例如: 1 2 3 4,有不少合并方法 1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19) 1 2 3 4 => 1 5 4(5)…
Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 1699    Accepted Submission(s): 769 Problem Description Far away from our world, there is a banana forest. And many lovely monkeys l…
区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n天卖掉i..j货物的收益 dp[begin][end]=max(dp[begin][end-1]+value[end]*(n-len+1) ,dp[begin+1][end]+value[begin]*(n-len+1)); 注意理解 代码 递推形式 #include<bits/stdc++.h>…
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1, t2, …, tn.可以用01串给这些单词编码,即将每个单词与一个01串对应,使得任何一个单词的编码(对应的01串)不是另一个单词编码的前缀,这种编码称为前缀码. 使用前缀码编码一段文字是指将这段文字中的每个单词依次对应到其编码.一段文字经过前缀编码后的长度为: L=a1的编码长度×t1+a2的…
HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前  i  个节点被分为  j  个区间所取得的最优值的情况 cost[i][j]表示从i到j元素区间中的值,这里可以直接排序后简单求出——也就是我们的代价函数 这样其实就能够做出来了,但是空间复杂度是n3入门的题能过,普通点的都会考察你一下斜率DP的优化和四边形不等式的优化.目前我主要就懂了平行四边形的优化 首先你要确保dp和cost这两个都满足四边形不等式这个前面有过证明的博客这里就…
题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left[i\right]+y\left[k\right]-y\left[j\right]$ 然后就明显可以区间dp了 设$dp\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$中的点连起来的最小花费,然后定义上面那个最小花费为$w\left(i,k,…
http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1 dp[i][j]表示第…
题意:就是求石子归并. 题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化. 就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四边形优化的条件: 1.证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件 2.证明m满足四边形不等式 3.证明s[i,j-1]≤s[i,j]≤s[i+1,j] .如果在10000左右时就…
看了下感觉区间dp就是一种套路,直接上的板子代码就好了. 基础题ac代码:石子归并 #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; ][]={{,},{,},{,},{,-},{-,},{-,-},{,-},{-,}}; #define pi acos(-1) #define ls rt<<1 #define rs rt<<…
Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi < xj and yi > yj for all i < j. We want to have them all connected by a directed tree whose edges go toward either right (x positive) or upward (y…
题目传送门 题意简述:(来自洛谷) 有n个城市坐落在一条数轴上,第ii个城市位于位置ai​. 城市之间有m辆卡车穿行.每辆卡车有四个参数:si​为起点编号,fi​为终点编号,ci​表示每行驶1个单位长度需要消耗的油量,ri​表示可以在路途中加油的次数. 当卡车到达一个城市的时候可以将油加满(当然也可以不加),在路中无法加油,但是路途中总加油次数不能超过ri​. 所有卡车的油箱都是一样大的,我们称它的容积为V.试求一个最小的V,使得对于所有的卡车都存在一种方案,在路途中任意时刻油箱内的油量大于等于…
题目链接 设$dp[l][r][p]$为走完区间$[l,r]$,在端点$p$时所需的最短时间($p=0$代表在左端点,$p=1$代表在右端点) 根据题意显然有状态转移方程$\left\{\begin{matrix}dp[l][r][0]=min(dp[l+1][r][0]+x[l+1]-x[l],dp[l+1][r][1]+x[r]-x[l]);\\ dp[l][r][1]=min(dp[l][r-1][0]+x[r]-x[l],dp[l][r-1][1]+x[r]-x[r-1]);\end{m…
http://lx.lanqiao.cn/problem.page?gpid=T414 题意:…… 思路:很普通的区间DP,但是因为n<=1000,所以O(n^3)只能拿90分.上网查了下了解了平行四边形优化:地址. 但是看不懂. #include <bits/stdc++.h> using namespace std; typedef long long LL; const LL INF = 100000000000000000LL; LL dp[][], s[][]; LL sum[…
题意:给n堆石子,每次合并相邻两堆,花费是这两堆的石子个数之和(1和n相邻),求全部合并,最小总花费 若不要求相邻,可以贪心地合并最小的两堆.然而要求相邻就有反例 为了方便,我们可以把n个数再复制一遍,放到第n个数后,就不用考虑环的问题了 我们设f[i][j]为合并区间[i,j]所需要的最小花费,然后就可以得到 f[i][j]=min{f[i][k]+f[k+1][j]+sum[i,j]} ,i<=k<=j,i<j; f[i][i]=0 然后就可以用$O(n^3)$的复杂度递推啦.此题结…
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef double db; template<typename T>inline :;} template<typename T>i…
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f[k+1][j]+cost(i,j) cost(i,j)=a[k].y-a[j].y+a[k+1].x-a[i].x; 明显了吧 证明一下,搞一搞,四边形性质就出来了,模板题吧. #include<cstdio> #include<cstring> #include<iostre…
题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\oplus k] = dp[i][j\oplus k] +dp[i][j] * dp[v][k]\) ,但暴力枚举\(dp[i][j] * dp[v][k]\),每次的复杂度是\(O(M^2)\)的,总的复杂度将是\(O(NM^2)\),N和M都是1e3,不行. 实际上每次要求的,是个异或的卷积.可以…
如果dp[i][j]=min(dp[i][k]+dp[k+1][j]+w[i][j]);且满足dp[a][c]+dp[b][d]<=dp[a][d]+dp[c][d](a<b<=c<d); 那么dp具有四边形不等式性质 另外如果可以证明w[i][j]满足单调性和四边形不等式性质,那么dp也具有四边形不等式性质 单调性:w[i][j]<=w[i][j+1]<=w[i+1][j+1] http://www.51nod.com/Challenge/Problem.html#p…
转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4374766.html   ---by 墨染之樱花 [题目链接]http://poj.org/problem?id=2486 [题目描述]给一张顶点带权值的图,求从1号点出发走k步的最大总权值(顶点可以重复走) [思路]经典的树形dp,本沙茶看了别人的题解才会orz....详情请见下面的代码中的详细注释 /* ******************************************…
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i] 但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤…
写一写要讲什么免得忘记了.DP的优化. 大概围绕着"是什么","有什么用","怎么用"三个方面讲. 主要是<算法竞赛入门经典>里的题目讲解,但是有些过于简单的删去了,添加了一些不怎么简单的省选题目作为例子 这里的DP优化都是涉及到O(nk)到O(nk-1)方法比较巧妙也有用到数学里面的定理之类. 所以秉着由易到难的原则,安排内容如下: 专题1:动态规划基础知识和计数DP.数位DP(几大类DP的类型介绍) 专题2:DP的简单优化(稍微提…
有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动相邻的2堆石子合并,合并花费为新合成的一堆石子的数量.求将这N堆石子合并成一堆的总花费最小. 区间DP思想:现在小区间进行DP得到最优解,然后再利用小区间的最优解组合并求大区间的最优解.(需要从小到大枚举所有可能的区间) 代码(没提交过,不过应该正确): include using namespace std; const int maxn1=300; int main() { int n,a[maxn1]={0},sum[maxn1…
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分,编一程序,由文件读入堆数n及每堆石子数(<=200): (1)选择一种合并石子的方案,使得做n-1次合并,得分的总和最少: (2)选择一种合并石子的方案,使得做n-1次合并,得分的总和最多: 输入格式 第一行为石子堆数n 第二行为每堆石子数,每两个数之间用一空格分隔. 输出格式 从第1行为得分最小 第2…
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿距离最短 题解: 很容易得到转移方程: $$dp[i][j]=min \{ dp[i][k-1]+dp[k][j] + dis(uni(i,k-1),uni(k,j))\}$$ 其中$dp[i][j]$表示从$i$到$j$的最优解,$dis(i,j)$表示$i$和$j$之间的曼哈顿距离,$uni(i…
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j]);(或者是max(........),本博客以min为例来证明) 熟悉一般区间dp的同学应该清楚我们如果想得到最终的答案,一般要用三层for循环来计算(第一层为长度,第二层枚举起始点,第三层在起始点i和终点j之间寻找最优的分割点).显而易见它的时间复杂度为o(n^3),…
入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[i][j] = min(dp[i][j],dp[i][k] + dp[k+1][j] + sum[i][j]) 对于第i堆到第j堆合并的花费 他的子问题是第i个的合并顺序 op1:k实际上控制的是第i堆也就是起始堆的合并顺序 因为必须是相邻合并dp[i][i] 先合并dp[i+1][j]最后再来合并…
二叉搜索树 [四边形不等式优化区间dp] 题目描述 有 \(n\) 个结点,第 \(i\) 个结点的权值为 \(i\) . 你需要对它们进行一些操作并维护一些信息,因此,你需要对它们建立一棵二叉搜索树.在整个操作过程中,第i个点需要被操作 \(x_i\) 次,每次你需要从根结点一路走到第 \(i\) 个点,耗时为经过的结点数.最小化你的总耗时. 输入格式 第一行一个整数 \(n\) ,第二行 \(n\) 个整数 \(x_1\to x_n\). 输出格式 一行一个整数表示答案. 样例 样例输入 5…
题目链接 贴个教程: 四边形不等式学习笔记 \(Description\) 给出平面上的\(n\)个点,满足\(X_i\)严格单增,\(Y_i\)严格单减.以\(x\)轴和\(y\)轴正方向作边,使这\(n\)个点构成一棵树,最小化树边边的总长. \(Solution\) 考虑有两棵构造好的树,要合并这两棵树,要从右边的树中找一个最优点连到左边的树上 不难想到区间DP(真的想不到==) \(f[i][j]\)表示将\([i,j]\)合并为一棵树的最小代价,那么有 \(f[i][j] = \min…