MAP;MLE】的更多相关文章

判别学习算法:直接对问题进行求解,比如二分类问题,都是在空间中寻找一条直线从而把类别的样例分开,对于新的样例只要判断在直线的那一侧就可. ==>这种直接求解的方法称为判别学习方法 生成学习算法:是对两个类别分别进行建模,用新的样例去匹配两个模型,匹配度较高的作为新的样例的类别: 应用:比如良性肿瘤与恶性肿瘤的分类,首先对两个类别分别建模,比如分别计算两类肿瘤是否扩散的概率,计算肿瘤大小大于某个值的概率等等: 判别学习方法:判别学习方法是直接对$p(y|x)$进行建模或者直接学习输入空间到输出空间…
对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场(crf):是给定一组输入随机变量条件下,另一组输出随机变量的条件概率的分布模型,其特点是假设输出随机变量构成马尔科夫随机场.本文所指线性链条件随机场. 隐马尔科夫模型(HMM):描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型. 当然,作为初学者,从概念上直观感受不到两者的区别与联系,甚至…
曲线拟合的几种方法 最大似然估计MLE,最大后验概率MAP:MLE和MAP MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知".最大化: MAP 假如这个参数有一个先验概率,比如说,在抛硬币的例子中,假如我们的经验告诉我们,硬币一般都是匀称的,也就是μ=0.5的可能性最大,μ=0.2的可能性比较小,那么参数该怎么估计呢?这就是MAP要考虑的问题. MAP优化的是一个后验概率,即给定了观测值后使概率最大: 把上式根…
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,…
最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为…
1.最大似然估计 (MLE):  什么是最大似然估计?     问题:给定一组观察数据还有一个参数待定的模型,如何来估计这个未知参数呢? 观察数据(x1,y1)......(xn,yn)   待定模型参数为θ,模型为f(x;θ).这时候可以借助观察数据来估计这个θ.这就是最大似然函数估计.      举个例子:         假设我们有一个袋子,里面装着白球和黑球,但是我们不知道他们分别有多少个,这时候需要我们估计每次取出一个球是白球的概率是多少?如何估计呢? 可以通过连续有放回的从袋子里面取…
频率学派(古典学派)和贝叶斯学派是数理统计领域的两大流派. 这两大流派对世界的认知有本质的不同:频率学派认为世界是确定的,有一个本体,这个本体的真值是不变的,我们的目标就是要找到这个真值或真值所在的范围:而贝叶斯学派认为世界是不确定的,人们对世界先有一个预判,而后通过观测数据对这个预判做调整,我们的目标是要找到这个世界的概率分布的最优表达. 本科期间学习的概率论与数理统计更多涉及的是频率学派的经典统计学观点,贝叶斯学派的观点也有接触,但是难以分清楚二者的区别.所以整理这篇博客,梳理关于这两个学派…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…
https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihood Estimation (MLE,最大似然估计) 贝叶斯学派 - Bayesian - Maximum A Posteriori (MAP,最大后验估计) 概述 有时候和别人聊天,对方会说自己有很多机器学习经验,深入一聊发现,对方竟然对MLE和MAP一知半解,至少在我看来,这位同学的机器学习基础并…
三个不同的估计框架. MLE最大似然估计:根据训练数据,选取最优模型,预测.观测值D,training data:先验为P(θ). MAP最大后验估计:后验概率. Bayesian贝叶斯估计:综合模型.权重叠加. Coin Toss Problem 扔硬币问题 硬币不均匀,P(H正面)=θ 若所投硬币序列为HHTHHT. 可以看出,若由人直接感官判断,正面概率为2/3.这其中包含了MLE思想. 由MLE严格推导可以得出正面概率确实为2/3. MAP近似到MLE 当n足够大时,先验P(θ)可以忽略…
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道均值和方差:或者对于逻辑回归,我们假定样本是服从二项分布,但是不知道均值,逻辑回归公式得到的是因变量y的概率P = g(x), x为自变量,通过逻辑函数得到一个概率值,y对应离散值为0或者1,Y服从二项分布,误差项服从二项分布,而非高斯分布,所以不能用最小二乘进行模型参数估计,可以用极大似然估计来进…
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布(i.i.d)的. 最大似然估计的一般求解过程: (1) 写出似然函数: (2) 对似然函数取对数,并…
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法. 1.最大似然估计(MLE) 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 也就是说,最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知). (1)基本思想 当从模型总体…
MLE & MAP : data / model parameter MLE: (1) keep the data fixed(i.e., it has been observed) and allow the parameters to vary (2) the likelihood function can tell you the likelihood of any particular parameter setting (3) 因此,MLE会针对某一特定data,调出最合适的参数 (4…
Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a method for estimating some variable in the setting of probability distributions or graphical models. They are similar, as they compute a single estim…
P3370 [模板]字符串哈希 题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. #友情提醒:如果真的想好好练习哈希的话,请自觉,否则请右转PJ试炼场:) 输入格式 第一行包含一个整数N,为字符串的个数. 接下来N行每行包含一个字符串,为所提供的字符串. 输出格式 输出包含一行,包含一个整数,为不同的字符串个数. 输入输出样例 INPUT: 5 abc aaaa abc abcc 12345 OUTPU…
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,那么有…
https://blog.csdn.net/u011508640/article/details/72815981…
https://www.cnblogs.com/sylvanas2012/p/5058065.html 写的贼好 http://www.cnblogs.com/washa/p/3222109.html#3543182…
最大后验估计是根据经验数据获得对难以观察的量的点估计.与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中.故最大后验估计可以看做规则化的最大似然估计. 首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f为我们所使用的模型.那么最大似然估计可以表示为: 现在,假设θ的先验分布为g.通过贝叶斯理论,对于θ的后验分布如下式所示: 最后验分布的目标为: 注:最大后验估计可以看做贝叶斯估计的一种特定形式. 举例来说: 假设有五个袋子,各袋中都…
Can you find it? Time Limit : 10000/3000ms (Java/Other)   Memory Limit : 32768/10000K (Java/Other) Total Submission(s) : 25   Accepted Submission(s) : 7 Problem Description Give you three sequences of numbers A, B, C, then we give you a number X. Now…
Gunner II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1740    Accepted Submission(s): 635 Problem Description Long long ago, there was a gunner whose name is Jack. He likes to go hunting ve…
题目链接 题目意思很简单nm的矩阵里, 选若干个ab的小矩阵, 定义每个矩阵的值为这个矩阵里的所有数的和-最小值*数的个数. 选小矩阵时, 优先选值最小的,然后次小的.. 知道不能选位置. 输出所有矩阵的左上角那个数的坐标以及这个矩阵的值. 思路很简单, 将所有矩阵的值加到一个优先队列里面, 然后一个一个的删除. 直到矩阵空. 不好做的是求一个矩阵中的最小值. 我先是用二维线段树, tle. 然后用二维st表, mle.... 然后看cf上的代码 ,用一个multiset来搞. 具体看代码..…
[机器学习基本理论]详解最大后验概率估计(MAP)的理解 https://blog.csdn.net/weixin_42137700/article/details/81628065 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.上篇讲解了ML…
地主毛毛有n座山,这些山在地主家门前排成一条直线.这些山一开始均有相同的高度.  每一天,毛毛都会要求花花开挖机把几座山挖掉一定高度,或者给一些山堆上一些高度.并且要求花花报告现在有多少座山属于“高山脉” 当一排山的高度相等,并且比这排山左边和右边的山要高时,这排山被称为高山脉. 当然,最左边和最右边的山不可能是“高山脉”的一部分 http://acm.hdu.edu.cn/showproblem.php?pid=5367   这题乍一看可以用线段树做,事实上确实可以用线段树做,但是在仔细思考,…
MAP:最大后验概率(Maximum a posteriori) 估计方法根据经验数据获得对难以观察的量的点估计.它与最大似然估计中的 Fisher方法有密切关系, 但是它使用了一个增大的优化目标,这种方法将被估计量的先验分布融合到其中.所以最大后验估计可以看作是规则化(regularization)的最大似然估计. [转载自]最大后验估计(MAP) - 可乐LL - 博客园 https://www.cnblogs.com/liliu/archive/2010/11/24/1886110.htm…
求树上点权积为立方数的路径数. 显然,分解质因数后,若所有的质因子出现的次数都%3==0,则该数是立方数. 于是在模意义下暴力统计即可. 当然,为了不MLE/TLE,我们不能存一个30长度的数组,而要压成一个long long. 存储状态用map即可,貌似哈希表可以随便卡掉……? 手动开栈……当然这样有可能MLE,所以还得改一些BFS…… <法一>map: #pragma comment(linker, "/STACK:1024000000,1024000000") #in…
目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE)-贝叶斯公式 总结:先验概率 后验概率以及似然函数的关系 机器学习基础 1. 概率和统计 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 顾名思义: 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方…
package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text…