pandas的loc, iloc, ix的操作】的更多相关文章

参考: https://blog.csdn.net/xw_classmate/article/details/51333646 1. loc——通过行标签索引行数据 2. iloc——通过行号获取行数据 3. ix——结合前两种的混合索引…
参考:Pandas中关于 loc \ iloc \ ix 用法的理解 相同点 使用形式都是 df.xxx[ para1 , para2 ] #xxx表示loc iloc ix#df表示一个DataFrame实例 含义是从data提取指定行列的值,其中哪几行用para1声明,哪几列用para2声明,para1与para2的组织形式相同,一般用到的形式为以下4种: #para1取不同值时的行选取,para2取这样值时则为相应的列选取 : 所有行 0:2 第1.2行,下标为0.1 7:9 第8.9行,…
先看代码: In [46]: import pandas as pd In [47]: data = [[1,2,3],[4,5,6]] In [48]: index = [0,1] In [49]: columns=['a','b','c'] In [50]: df = pd.DataFrame(data=data, index=index, columns=columns) In [51]: df Out[51]: a b c 0 1 2 3 1 4 5 6 1. loc--通过行标签索引行…
In [114]: df Out[114]: A B C D 2018-06-30 0.318501 0.613145 0.485612 0.918663 2018-07-31 0.614796 0.711491 0.503203 0.170298 2018-08-31 0.530939 0.173830 0.264867 0.181273 2018-09-30 0.009428 0.622133 0.933908 0.813617 2018-10-31 0.126368 0.981736 0.…
-----------------------------------------------------------------------------------------------------------------------------------------------…
转自:https://blog.csdn.net/qq_21840201/article/details/80725433 ### 随机生DataFrame 类型数据import pandas as pdimport numpy as npframe = pd.DataFrame(np.random.rand(4,4),index=list('abcd'),columns=list('ABCD'))frame  A B C Da 0.560094 0.352686 0.954100 0.9262…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧. 首先,还是列出一个我们用的DataFrame,注意index一列,如下: 接下来,介绍下各个函数的用法: 1.loc函数 愿意看…
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在index上索引,索引不到就在index的位置上进行索引(如果index非全整数),不包括end…
loc 从特定的 gets rows (or columns) with particular labels from the index. iloc gets rows (or columns) at particular positions in the index (so it only takes integers). ix usually tries to behave like loc but falls back to behaving like iloc if a label i…
pandas选取数据可以通过 loc iloc  [] 来选取 使用loc选取某几列: user_fans_df = sample_data.loc[:,['uid','fans_count']] 使用[] 来选取列 reader_login_freq_df = sample_data[['reader_uid','reader_login_freq','reader_age']] []选取,应该是返回了元数据的一份视图,本质上应该没有新生成一份数据. loc应该是又返回了一份新的数据…
1 四个函数都是用于dataframe的定位 []用于直接定位. loc()函数是用真实索引,iloc()函数是用索引序号. loc()函数切片是左闭右闭,iloc()函数切片是左闭右开. at(),iat()的关系同上. import pandas as pd import numpy as np df = pd.DataFrame(np.arange(24).reshape(6,4), columns=list('ABCD'), index=list('abcdef')) print(df)…
摘自:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.loc.html 具体用法,假设数据源为: >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_s…
数据介绍 先随机生成一组数据: import pandas as pd import numpy as np state = ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'] year = [2000, 2001, 2002, 2003, 2004] pop = [1.3, 1.4, 1.6, 4.5, 2.7] frame = pd.DataFrame({'state': state, 'year': year, 'pop': pop}) print(f…
Different Choices for Indexing 1. loc--通过行标签索引行数据 1.1 loc[1]表示索引的是第1行(index 是整数) import pandas as pd data = [[1,2,3],[4,5,6]] index = [0,1] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) print df.loc[1] ''' a 4 b 5 c…
1.先来谈一谈loc,loc这个方法就是你有啥我就用啥,你没有的我不用,pandas对象的index,columns有什么,pd.loc[index,column],index就是pd.index的其中的一个值或者是其中几个值组成的序列,或就是pd.index,column是pd.columns中的一个值或者其中几个值,或者就是pd.columns 来来上代码 1 >>>data 2 UserID MovieID Rating 3 1 2 257 2 4 0 3 251 2 5 3 2…
直接看例子: >>> data = pd.Series(np.arange(10), index=[49,48,47,46,45, 1, 2, 3, 4, 5]) >>> data 49 0 48 1 47 2 46 3 45 4 1 5 2 6 3 7 4 8 5 9 dtype: int64 >>> data.iloc[:3] 49 0 48 1 47 2 dtype: int64 >>> data.loc[:3] 49 0 48…
loc: only work on indexiloc: work on positionix: You can get data from dataframe without it being in the indexat: get scalar values. It's a very fast lociat: Get scalar values. It's a very fast iloc…
refer to: http://www.cnblogs.com/harvey888/p/6006200.html…
oc与iloc函数 loc函数 import pandas as pd import numpy # 导入数据 df = pd.read_csv(filepath_or_buffer="D://movie.csv") df_new = df.set_index(["country"]) df_new.loc[list(["Canada"])] # 1 df_new.loc[df_new["duration"]>160]…
最近使用pandas,一直搞不清楚其中几种切片方法的区别,今天专门看了一下. 0. 把Series的行index或Dataframe的列名直接当做属性来索引. 如: s.index_name df.column_name 但是这种方法索引的名字可能会与自带的方法冲突,比如min,max等等,所以可能会失效.另外,在新版本中,这种索引方法不能作为左值. 1. df[]直接索引 直接索引索引的是列,方口号里面的内容一般是列索引名.也可以接受一个列名组成的list来接受多个列名. df['A'] df…
转载至:https://blog.csdn.net/w_weiying/article/details/81411257 loc函数:通过行索引 "Index" 中的具体值来取行数据(如取"Index"为"A"的行) iloc函数:通过行号来取行数据(如取第二行的数据) 本文给出loc.iloc常见的五种用法,并附上详细代码. 1. 利用loc.iloc提取行数据 import numpy as np import pandas as pd #创…
1. loc是用标签(也就是行名和列名)来查找,标签默认是数字,但也可以通过index参数指定为字符型等其他的类型. 格式是df.loc[行名,列名],如果列标签没有给出,则默认为查找指定行标签的所有列. 例如: 1.1 创建一个DataFrame,不指定各行的名称(或者说标签),pandas会默认通过数字编号,将各行命名为0,1,2,... 1.2 df.loc[行名],不指定列名,则查找输出该行名的所有列: 1.3 df.loc[行名,列名],则查找行名为0,列名为'id'的值: 1.4 d…
#导入pandas import pandas as pd import numpy as np #导入SqlAlchemy from sqlalchemy import create_engine if __name__ == "__main__": #建立数据库引擎 engine = create_engine('mysql+pymysql://root:mysql@localhost:3306/mymac') #写一条sql sql = 'select id,name,age,g…
选择列: 选择一列: 选择多列(选择的内容变成list,也就是要两个方括号): 选择一行或多行(loc函数): 选择连续的行(以索引标签为选择参数): 选择非连续的行(以索引标签为选择参数): 选择包含某个特定值的行(以具体行的值为参数): 选择包含多个变量要求的行(各个变量之间要用圆括号括起来,汉字的条件要用名称索引法(中括号)而不能用点取法): 选择包含多个变量条件的行和特定要求的列: 选择某一个元素值(其中loc是按索引选取,iloc是按位置选取): iloc是按位置选取的(方法跟loc类…
一.查看数据 1.查看DataFrame前xx行或后xx行a=DataFrame(data);a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据.a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据. 2.查看DataFrame的index,columns以及valuesa.index ; a.columns ; a.values 即可 3.describe()函数对于数据的快速统计汇总a.describe()对每一列数据进行统计,包括计数…
import pandas as pddf=pd.DataFrame({ "a":[1,2,3], "b":[4,5,6], "c":[7,8,9]}) a b c0 1 2 31 4 5 62 7 8 9 df1=df['a'] #<class 'pandas.core.series.Series'> df2=df[['a','b']] #<class 'pandas.core.frame.DataFrame'>#ser…
pandas包 # 引入包 import pandas as pd import numpy as np import matplotlib.pyplot as plt Series Series 是一维带标签的数组,数组里可以放任意的数据(整数,浮点数,字符串,Python Object).其基本的创建函数是: s = pd.Series(data, index=index) 其中 index 是一个列表,用来作为数据的标签.data 可以是不同的数据类型: Python 字典 ndarray…
import pandas as pd data1 = pd.read_excel(r"G:\Python\example1.xlsx") loc 用行列标签,iloc用数字索引.严格遵守使用规则,那么索引将很容易. data1 .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertic…
来自:Python那些事 pandas中accessor功能很强大,可以将它理解为一种属性接口,通过它获得额外的方法. 下面用代码和实例理解一下: import pandas as pd pd.Series._accessors 对于Series数据结构使用_accessors方法,我们得到3个对象:cat, str, dt. .cat:用于分类数据(Categorical data) .str:用于字符数据(String Object data) .dt:用于时间数据(datetime-lik…