题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈. 思路简介:对比普里姆和克鲁斯卡尔算法,克鲁斯卡尔算法主要针对边来展开,边数少时效率比较高,所以对于稀疏图有较大的优势:而普里姆算法对于稠密图,即边数非常多的情况下更好一些.其大致思路为在现有顶点中任意寻找一个顶点,将他作为根结点,然后在与他连接的所有边中,选择一条最短的边,同时将这条边两端的顶点…
MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而kruskal算法的时间复杂度为O(eloge),跟边的数目有关,适合稀疏图. prim算法 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合.算法从U={u0}(u0∈V),TE={ 空集 }开始.重复执行下列操作: 1.在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最…
文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,我们要选择这样一个生成树,使总的耗费最少.这个问题就是构造连通网的最小代价生成树(Minimum Cost Spanning Tree: 最小生成树)的问题.一棵生成树的代价就是树上各边的代价之和. 有多种算法可以构造最小生成树,其他多数都利用的最小生成的MST(minimum…
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vexs[MAXVEX]; EdgeType arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; }MGraph…
一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.像 Kruskal算法一样,Prim算法也是贪婪算法. 二.Prim算法思想 Prim算法的思想很简单,一棵生成树意味着必须连接所有顶点.因此必须将两个不相交的顶点子集连接起来才能生成生成树 .并且它们必须以最小的权重边连接,以使其成为最小的生成树(MST).它从一棵空的生成树开始.这个…
对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成树. 其中运用到了回溯,贪心的思想. 废话少说吧,这个其实是一个模板,直接套用就好!直接上题吧!这些东西多练就好! 一.最小生成树: 题目描述 求一个连通无向图的最小生成树的代价(图边权值为正整数). 输入 第 一行是一个整数N(1<=N<=20),表示有多少个图需要计算.以下有N个图,第i图的第…
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权值之和最小.(注:N个顶点的图中,其最小生成树的边为N-1条,且各边之和最小.树的每一个节点(除根节点)有且只有一个前驱,所以,只有N-1条边.) 该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(Robert C.…
继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 10765    Accepted Submission(s): 4704 Problem Description 省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).现得到城镇道路统计表,表中列出了任意两…
Prim算法 (哈欠)在创建最小生成树之前,让我们回忆一下什么是最小生成树.最小生成树即在一个待权值的图(即网结构)中用一个七拐八绕的折线串连起所有的点,最小嘛,顾名思义,要权值相加起来最小,你当然可以拿起笔来就算你脑中的每一种可能,但是如果你了解了这种算法,你就能跟我一样,一次画出完美答案. 上个栗子: 我先说一哈这个算法的方法论,然后我们来代码实现一下,在讲解开始之前,敲黑板,记得我们要生成一个权值最小的树,所以每一步都要考虑到树的每一个结点,不要孤立地用一个结点来对比从而走上死路,我们任选…
描述: 一个连通图的生成树是指一个极小连通子图,它含有图中的全部顶点,但只有足以构成一棵树的 n-1 条边.我们把构造连通网的最小代价生成树成为最小生成树.而Prim算法就是构造最小生成树的一种算法. 定义: 假设N = (P,{E})是连通网,TE是N上最小生成树中边的集合.算法从U = {U0}(U0属于V).开始重复执行下述操作:在所有u属于U,v属于V-U的边(u,v)属于E中找到一条代价最小的边(u0,v0)并入集合TE,同事v0并入U,知道U = V为止.此时TE中必有n-1条边,则…