原文链接www.cnblogs.com/zhouzhendong/p/UOJ401.html 题解 首先,对于一个排列,它的连续段一定只有包含关系,没有相交关系. 我们可以据此得到一棵表示连续段的树. 对于一个连续段节点,它有若干儿子. 由于它的每一个儿子都是连续段,所以我们可以将这些儿子各自看作一个数.设节点x的度数为 d[x]. 设 f[x] 表示 L 数组为 1,1,1,...1,L+1 这样的排列个数,那么答案就是 $\prod f[d[x]]$ . 然后我们得到了一个关于 f[x] 的…
[CTSC2018]青蕈领主 题解 首先,连续段要知道结论: 连续段要么不交,要么包含 所以是一棵树!每个位置的father是后面第一个包含它的 树形DP! 设dp[x],x为根的子树,(设管辖的区间长度为len,也即L[x]),用1~len的数填充,满足L的方案数 也就是,每个son内部合法, 给每个son分配标号区间,使得相邻儿子不会再接在一起 不会再接在一起? 所以可以把每个儿子看成单独一个点,就划归成了:1,1,1,1,...len的方案数! 设f[i]表示,长度为i+1的1,1,1,1…
题目大意 \(T\)(\(T\leq100\))组询问 有\(1\)到\(n\)(\(n\leq50000\))这\(n\)个整数组成的一个排列 定义这个排列的一个子区间是"连续"的,当且仅当这个子区间在位置上和在值域上都是连续的 分别给出这个排列以每个位置\(i\)为右端点的最长"连续"子区间的长度\(l_i\),问有多少个排列满足这个条件 题解 发现这些最长"连续"子区间一定是相互包含或相离的,不会相交 用反证法:假设有\(x<y\),…
Loj #2554. 「CTSC2018」青蕈领主 题目描述 "也许,我的生命也已经如同风中残烛了吧."小绿如是说. 小绿同学因为微积分这门课,对"连续"这一概念产生了浓厚的兴趣.小绿打算把连续的概念放到由整数构成的序列上,他定义一个长度为 \(m\) 的整数序列是连续的,当且仅当这个序列中的最大值与最小值的差,不超过\(m-1\).例如 \(\{1,3,2\}\) 是连续的,而 \(\{1,3\}\) 不是连续的. 某天,小绿的顶头上司板老大,给了小绿 \(T\)…
传送门 话说分治\(FFT\)是个啥子啊--还有题目里那字好像念(蕈xùn) 首先考虑无解的情况:区间相交或者\(L_n\neq n\) 这两个都可以感性理解一下 所以区间之间只会有包含关系,我们把每个小区间向它右边的第一个包含它的大区间连边,那么会构成一个树形结构 对于一个大区间来说,那些作为它儿子的小区间每一个都是连续的,并且互不相交,假设它有\(sz\)个儿子,把每一个儿子都缩成一个点,那么就是需要一个排列满足\(L\)分别为\(1,1,1,...,sz+1\),其中第\(sz+1\)个是…
题目:https://loj.ac/problem/2554 一个“连续”的区间必然是一个排列.所有 r 不同的.len 最长的“连续”区间只有包含.相离,不会相交,不然整个是一个“连续”区间. 只有包含.相离,可以看出一个树形结构.直接暴露在自己区间里的小区间(即没有被其他小区间包含)就是自己的孩子. 每个孩子的值是一个区间,自己的值也是一个区间,不同孩子的区间不能融合,所以每个孩子看成一个点,自己的右端点也是一个点,值就是一个长度为 “孩子个数+1” 的合法排列.合法指的是除了最后一个位置的…
首先显然的是,题中所给出的n个区间要么互相包含,要么相离,否则一定不合法. 然后我们可以对于直接包含的关系建出一棵树,于是现在的问题就是给n个节点分配权值,使其去掉最后一个点后不存在非平凡(长度大于1)的连续区间. 我们发现这个方案数和不存在不经过最大(小)值的非平凡连续区间的排列数是等价的. 于是我们考虑$f[n]$为长度为$n+1$的答案,我们考虑去掉最小值. 如果合法,那么必然是$f[n-1]$中的一种情况,而这时我们要将最小值插进去,我们发现,只要不插在次小值旁边就都是合法的,于是这部分…
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个,其中\(c\in A\),且\(c\)个儿子是叶子,另外\(2\)个存在子树,且两种点的链接的边是不同的,求方案数. 那么就考虑一个暴力\(dp\),设\(f[i]\)表示有\(i\)个节点的树的个数. 那么枚举它两个有子树的子树大小,然后把编号给取出来,得到: \[f[i]=\frac{1}{2}…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友. 这年头真是--分治FFT都开始烂大街了-- 我们来推一推吧 这显然是一个1d1d的DP,用f[i]表示i名队员的方案数 f[i]=∑j=0i−1f[i−j−1]∗Cji−1 即i−1个人里面选j个和i组队(似乎类似strling数) 然后化一下简,便可得到 f[i]=(i−1)!∑j…