NOIP2000提高组复赛C 单词接龙】的更多相关文章

题目链接:https://ac.nowcoder.com/acm/contest/248/C 题目大意: 略 分析: 注意点:1.前缀和后缀的公共部分应该选最短的.2.如果两个字符串前缀和后缀的公共部分恰好是其中一个字符串,那么这两个字符串不能合并. 代码如下: #include <bits/stdc++.h> using namespace std; #define rep(i,n) for (int i = 0; i < (n); ++i) #define For(i,s,t) fo…
题目描述 Description 今年是国际数学联盟确定的“2000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加.活动中,主持人给所有参加活动的选手出了这样一道题目: 设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大. 同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子: 有一个数字串:312, 当N…
题目描述 单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如 beast和astonish,如果接成一条龙则变为beastonish,另外相邻的两部分不能存在包含关系,例如at 和 atide 间不能相连. 输入输出格式 输入格式: 输入的第一行为一个单独的整数n (n<=20)表示单词数,以下n 行每行有一个单词,输入的最后一行为一个单…
题目描述 今年是国际数学联盟确定的“2000――世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加.活动中,主持人给所有参加活动的选手出了这样一道题目: 设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大. 同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子: 有一个数字串:312, 当N=3,K=1时会有以下两…
题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+3*10^0这样的形式. 与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式.一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数.如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1.例如,当R=7时…
[题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问题 \(\text{[P2822]}\) 蚯蚓 \(\text{P[2827]}\) 愤怒的小鸟 \(\text{P[2831]}\) [Day1] 玩具谜题 \(\text{[P1563]}\) [T1] [题目描述] 有 \(n\) \((n \leqslant 10^5)\) 个小人围成一圈(…
[题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P2679]\) 运输计划 \([P2680]\) [Day1] [T1] 神奇的幻方 \([P2615]\) [题目描述] 幻方是由 \(1,2,3...n*n\) 共 \(n^2\) 个数组成一个的 \(n*n\) 的矩阵. 当 \(n\) 为奇数时,可按以下方式构造一个幻方: 首先将 \(1\) 写…
题目描述 单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的"龙"(每个单词都最多在"龙"中出现两次),在两个单词相连时,其重合部分合为一部分,例如 beast和astonish,如果接成一条龙则变为beastonish,另外相邻的两部分不能存在包含关系,例如at 和 atide 间不能相连. 输入输出格式 输入格式: 输入的第一行为一个单独的整数n (n<=20)表示单词数,以下n 行每…
神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. 之后,按如下方式从小到大依次填写每个数K(K=2,3,…,N*N): 1.若(K−1)在第一行但不在最后一列,则将K填在最后一行,(K−1)所在列的右一列: 2.若(K−1)在最后一列但不在第一行,则将K填在第一列,(K−1)所在行的上一行: 3.若(K−1)在第一行最后一列,则将K填…
事实再次向我证明了RP的重要性... 第一题:进制转换 是我最没有把握AC的一道题目却是我唯一一道AC的题目,真是讽刺.看完题目几乎完全没有往正常的解法(取余倒序)去想,直接写了搜索,因为数据范围在2^16,感觉枚举每一位上的数应该就够了,但是在自己的电脑上连样例都用了3.4s,然后想不到任何有效的剪枝,就果断放弃了.最后写完其他三题之后还是回过头看了下这道题,还是没往正常的解法想....结果惊人地AC了...RP真的太重要了. 然后经提醒终于想到了正常一点的解法,查了网上的题解之后开始自己写取…