数据为kaggle社区发布的数据分析从业者问卷调查分析报告,其中涵盖了关于该行业不同维度的问题及调查结果.本文的目的为提取有用的数据,进行描述性展示.帮助新从业的人员更全方位地了解这个行业. 参考学习视频:http://www.tianshansoft.com/ 数据集:https://pan.baidu.com/s/1o7BFzFO 变量说明 数据中包含228个变量,提取其中的一些较有价值的变量进行描述性分析 数据处理 survey <-read.csv(stringsAsFactors =…
记得14年开始做用户画像的时候,对于用户画像完全没有概念,以为是要画一幅幅图画,经过两年多的学习和理解,渐渐的总结出了一些方法和技巧,在这里就通过4个W英文字母开头和1个H英文字母开头的单词和大家分享一下我关于用户画像的理解.   本文框架 一.什么是用户画像(What) 用户画像最早是由交互设计之父Alan Cooper提出persona逐渐演化而来的,他最早提出persona的概念: Personas are a concrete representation of target users…
doubleclick cookie https://mp.weixin.qq.com/s/vZUj-Z9FGSSWXOodGqbYkA 揭密Google的网络广告技术:基于互联网大数据视角 原创: 曾剑平 互联网大数据处理技术与应用 2018-04-11 相信每个人在上网时都被各种网络广告所困扰,不断地消耗着我们的流量.如果稍微细心观察,或许会发现不同网站推送过来的广告也比较适合自己的偏好,看来其中的技术手段并非简单之事.涉及到互联网大数据技术包括:cookie.动态脚本.用户画像.用户行为分…
主要工作: 1.对从网上营业厅拿到的用户数据.xls文件,通过Python的xlrd进行解析,计算用户的主叫被叫次数,通话时间,通话时段. 2.使用matplotlib画图包,将分析的结果直观的绘制出来. 具体步骤: 1.分析须要的内容 excel文件中包含很多信息,我们分析的时候须要用到的包括,通话起始时间.通话时长.呼叫类型,号码. 使用xlrd模块,读取excel中的数据,用列表的形式保存下来. #coding=utf-8 import xlrd def readData(url): da…
  CD商品订单数据的分析总结.根据订单数据(用户的消费记录),从时间维度和用户维度,分析该网站用户的消费行为.通过此案例,总结订单数据的一些共性,能通过用户的消费记录挖掘出对业务有用的信息.对其他产品的线上消费数据分析有一定的借鉴价值,能达到举一反三的效果. 订单交易数据分析 目录 一.案例背景 二.案例目的 三.分析框架 imageimage 四.分析过程 4.1数据加载和初探 4.2消费概况分析 4.2.1时间维度分析消费情况(按月) 4.2.2用户维度分析消费情况 4.2.2.1个体消费…
​什么是BI? BI(Business Intelligence)即商业智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,分析利用企业已有的各种商用数据来了解企业的经营状况和外部环境,从而为企业的经营决策提供数据支撑. 什么是用户行为分析? 用户行为分析:在获得网站访问量最基本数据的情况下,对有关数据进行统计.分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步的修正或者是重新制定网络营销策略提供依据. 用户行…
大数据是物理世界在网络世界的映射,是一场人类空前的网络画像运动.网络世界与物理世界不是孤立的,网络世界是物理世界层次的反映.数据是无缝连接网络世界与物理世界的DNA.发现数据DNA.重组数据DNA是人类不断认识.探索.实践大数据的持续过程. 图1 大数据发展路径 陈新河把网络画像分为行为画像.健康画像.企业信用画像.个人信用画像.静态产品画像.旋转设备画像.社会画像和经济画像等八类,并通过实践案例进行了阐释. 未来,人生的每个历程无时无刻不由数据驱动. 图2 数据驱动人生 未来,设备全生命周期也…
Mirror产品概述 Mirror是专为金融行业设计的全面用户画像管理系统.该系统基于星环多年来为多个金融企业客户构建用户画像的经验,深入契合业务需求,实现对用户全方位全维度的刻画.Mirror内置银行业和证券业的用户画像模板,同时在技术上继承了Transwarp Data Hub大数据平台的优势,能够快速在全量数据上进行计算和提供查询.同时,Mirror采用了灵活的接口设计,可以方便地进行二次开发和对接其它应用. Mirror产品特点 构造金融客户的信息生态系统,支持跨业务,跨产品的精准客户群…
用SparkSQL构建用户画像 二.  前言 大数据时代已经到来,企业迫切希望从已经积累的数据中分析出有价值的东西,而用户行为的分析尤为重要. 利用大数据来分析用户的行为与消费习惯,可以预测商品的发展的趋势,提高产品质量,同时提高用户满意度. 三.  初识用户画像 右边是一个人的基本属性,通过一个人的基本属性我们可以了解到这个人的基本信息,左边上图是通过消费购物信息来描述一个人特征,左边下图是通过交际圈信息来描述一个人特征,通过不同的维度,去描述一个人,认识一个人,了解一个人.这就是我们今天所要…
什么是用户画像? 用户画像是根据某个具体的用户的人口学特征.网络浏览内容.网络社交活动和消费行为等信息而抽象出的一个标签化的用户模型.例如某用户的画像是:男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟. 用户画像的本质: 将用户信息标签化(包括该标签的权重),如:喜欢红酒 0.8.经常购买李宁 0.6. * “标签”是能表示用户某一维度特征的标识.需要注意的是,标签需要和业务/产品相关联. 用户画像有什么用? 1,可以用于精细化运营.之前说过用户分层和分群是精细化运营的基础,但…