题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们考虑做一个转化:每次随便从全集中选出一个猎人(不管死的活的),如果它是活的就将它射死.假设现在死了的猎人的 \(w_i\) 值之和为 \(T\),所有猎人的 \(w_i\) 值之和为 \(U\),那么精通无穷级数的同学应该不难推出,对于某个还活着的猎人 \(j\),射到的第一个活着的猎人是 \(j\…
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为\(\frac {a_i}k\).求第\(1\)个人最后被打死的概率. 一个重要性质 对于这题,首先我们可以发现,由于一个人死后,其他人被打中概率的分母会受到影响,产生了后效性,似乎很不可维护. 因此我们需要知道一个重要性质:设\(tot=\sum_{i=1}^na_i\),则题意可以转化为,每个人…
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespa…
正题 题目链接:https://www.luogu.com.cn/problem/P5644 题目大意 \(n\)个人,每个人被选中的权重是\(a_i\).每次按照权重选择一个没有死掉的人杀死,求第\(1\)个人最后死的概率.输出答案对\(998244353\)取模. \(w_i>0,\sum_{i=1}^nw_i\leq 10^5\) 解题思路 这个死掉之后概率的分母会变所以挺麻烦的,考虑一下变成每次随便选择一个人,如果没有死就杀掉,这样每个人被选择的概率就不变了. 然后考虑到计算恰好最后一个…
题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.html https://blog.csdn.net/VictoryCzt/article/details/82939586 不知为何自己的总是很慢. 觉得是 n 和 m 表示次数的话,len<=n+m:n 和 m 表示项数的话,len<n+m:应该是这样? 这里是 mid-L+1 项和 R-L+1…
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\([i,mid]\)区间内最小值\(mn\)和最大值\(mx\).我们可以想到,对于某一个左端点,它的右端点\(j\)在一定的范围内,最小值和最大值都不会变.这里就看到一些可以重复利用并快速计算的信息了. 维护两个指针\(p,q\),分别表示\([mid+1,r]\)内元素值第一个小于\(mn/\)大…
题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using std::swap; using std::sort; typedef long lo…
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 200005; int n, k, m; struct node{ int x, y, z, id, w; bool operator < (const node &a…
传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{align*} ans_t&=\sum_{i=1}^n \sum_{j=1}^m (a_i+b_j)^t\\ &=\sum_{i=1}^n \sum_{j=1}^m \sum_{k=0}^t {t\choose k} a_i^k b_j^{t-k}\\ &=t!\sum_{k=0}^t (\s…
Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \(1\) 个人最后一个死亡的概率 Solution 设 \(B = \sum_{i=2}^nw_i\) 要求 \(1\) 号最后一个被选中有点不好做,但是求 \(1\) 号第一个被选中还是比较好做的(\(\frac {w_1}{\sum_{i=1}^nw_i}\)) 至于这两者怎么联系起来,使用 \(…