sparkSQL catalyst】的更多相关文章

最近想来,大数据相关技术与传统型数据库技术很多都是相互融合.互相借鉴的.传统型数据库强势在于其久经考验的SQL优化器经验,弱势在于分布式领域的高可用性.容错性.扩展性等,假以时日,让其经过一定的改造,比如引入Paxos.raft等,强化自己在分布式领域的能力,相信一定会在大数据系统中占有一席之地.相反,大数据相关技术优势在于其天生的扩展性.可用性.容错性等,但其SQL优化器经验却基本全部来自于传统型数据库,当然,针对列式存储大数据SQL优化器会有一定的优化策略. 本文主要介绍SparkSQL的优…
最近想来,大数据相关技术与传统型数据库技术很多都是相互融合.互相借鉴的.传统型数据库强势在于其久经考验的SQL优化器经验,弱势在于分布式领域的高可用性.容错性.扩展性等,假以时日,让其经过一定的改造,比如引入Paxos.raft等,强化自己在分布式领域的能力,相信一定会在大数据系统中占有一席之地.相反,大数据相关技术优势在于其天生的扩展性.可用性.容错性等,但其SQL优化器经验却基本全部来自于传统型数据库,当然,针对列式存储大数据SQL优化器会有一定的优化策略. 本文主要介绍SparkSQL的优…
额,没忍住,想完全了解sparksql,毕竟一直在用嘛,想一次性搞清楚它,所以今天再多看点好了~ 曾几何时,有一个叫做shark的东西,它改了hive的源码...突然有一天,spark Sql突然出现,如下图: = =好了,不逗了,言归正传...那么一条sql传统数据库会是怎么解析的呢? 传统数据库的解析过程是按Rusult.Data Source.Operation的次序来解析的.传统数据库先将读入的SQL语句进行解析,分辨出SQL语句中哪些词是关键字(如select,from,where),…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .SparkSQL的发展历程 1.1 Hive and Shark SparkSQL的前身是Shark,给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具,Hive应运而生,它是当时唯一运行在Hadoop上的SQL-on-Hadoop工具.但是MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率,为了提高SQL-on-Hadoop的效率,大量的S…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .运行环境说明 1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMware® Workstation 9.0.0 build-812388 l  虚拟机操作系统:CentOS 64位,单核 l  虚拟机运行环境: Ø  JDK:1.7.0_55 64位 位) Ø  Scala:2.10.4 Ø  Spark:1.1.0(需要编译) Ø  Hive:0.13.1 1.2 机器网络…
一.概述 从1.3版本开始Spark SQL不再是测试版本,之前使用的SchemaRDD重命名为DataFrame,统一了Java和ScalaAPI. SparkSQL是Spark框架中处理结构化数据的部分,提供了一种DataFrames的概念,同时允许在Spark中执行以SQL,HiveQL或Scala表示的关系型查询语句. 就易用性而言,对比传统的MapReduceAPI,说Spark的RDD API有了数量级的飞跃并不为过.然而,对于没有MapReduce和函数式编程经验的新手来说,RDD…
SparkSQL继承自Hive的接口,由于hive是基于MapReduce进行计算的,在计算过程中大量的中间数据要落地于磁盘,从而消耗了大量的I/O,降低了运行的效率,从而基于内存运算的SparkSQL应运而生. 首先说下传统数据库的解析,传统数据库的解析过程是按Rusult.Data Source.Operation的次序来解析的.传统数据库先将读入的SQL语句进行解析,分辨出SQL语句中哪些词是关键字(如select,from,where),哪些是表达式,哪些是Projection,哪些是D…
Spark是一个通用的大规模数据快速处理引擎.可以简单理解为Spark就是一个大数据分布式处理框架.基于内存计算的Spark的计算速度要比Hadoop的MapReduce快上100倍以上,基于磁盘的计算速度也快于10倍以上.Spark运行在Hadoop第二代的yarn集群管理之上,可以轻松读取Hadoop的任何数据.能够读取HBase.HDFS等Hadoop的数据源. 从Spark 1.0版本起,Spark开始支持Spark SQL,它最主要的用途之一就是能够直接从Spark平台上面获取数据.并…
Catalyst揭秘 Day8 Final 外部数据源和缓存系统 今天是Catalyst部分的收官,主要讲一些杂项内容. 外部数据源处理 什么叫外部数据源,是SparkSql自己支持的一些文件格式,以及一些自己自定义格式的文件开发. 让我们从文件的读取api开始,可以看到最终会创建一个DataFrame,当中比较关键的是relation方法. 首先,会以反射方式获取provider. 我们以json文件为例,其provider为json.DefaultSource.可以看到继承自HadoopFs…
Catalyst揭秘 Day6 Physical plan解析 物理计划是Spark和Sparksql相对比而言的,因为SparkSql是在Spark core上的一个抽象,物理化就是变成RDD,是SparkSql和Spark core之间的衔接点. Physical Plan也是Catalyst变成Spark作业的最后一个阶段. 生成SparkPlan 从代码,我们可以看到SparkPlan的生成包含了两个步骤,首先会调用SparkPlanner的plan方法,生成SparkPlan,调用pr…