filename='g:\data\iris.csv' lines=fr.readlines()Mat=zeros((len(lines),4))irisLabels=[]index=0for line in lines: line=line.strip() if len(line)>0: listFromline=line.split(',') irisLabels.append(listFromline[-1]) Mat[index,:]=listFromline[0:4] index=in…
代码多来自<Introduction to Machine Learning with Python>. 该文集主要是自己的一个阅读笔记以及一些小思考,小总结. 前言 在开始进行模型训练之前,非常有必要了解准备的数据:数据的特征,数据和目标结果之间的关系是什么?而且这可能是机器学习过程中最重要的部分. 在开始使用机器学习实际应用时,有必要先回答下面几个问题: 解决的问题是什么?现在收集的数据能够解决目前的问题吗? 该问题可以转换成机器学习问题吗?如果可以,具体属于哪一类?监督 or 非监督 从…
''' Created on 2017年5月21日 @author: weizhen ''' #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练Tensorflow模型进行了一些封装 #使其更便于使用. #使用TFLearn实现分类问题 #为了方便数据处理,本程序使用了sklearn工具包, #更多信息可以参考http://scikit-learn.org from sklearn import model_selection from sk…
首先引入需要的包 %matplotlib inline import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import sys import os path = os.path.abspath('..') if not path in sys.path: sys.path.append(path) 载入数据集,使数据中心化(减去平均值) from dataset.cl…
import matplotlib.pyplot as plt from scipy import sparse import numpy as np import matplotlib as mt import pandas as pd from IPython.display import display from sklearn.datasets import load_iris import sklearn as sk from sklearn.model_selection impor…
# coding=utf-8 import pandas as pd from sklearn.model_selection import train_test_split from sklearn import tree from sklearn.metrics import precision_recall_curve #准确率与召回率 import numpy as np #import graphviz import os os.environ["PATH"] += os.p…
#coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tutorials.mnist import input_data def imageprepare(argv): # 该函数读一张图片,处理后返回一个数组,进到网络中预测 """ This function returns the pixel values. The imput is…