[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 基本用法 2.2 将模型并行应用到现有模块 2.3 问题与方案 2.3.1 目前状况 2.3.2 解决方案 2.4 通过流水线输入加速 0x03 分布式问题和方案 3.1 思路 3.2 PyTorch 的思路 3.2.1 四大天王 3.2.2 逻辑关系 0x04 PyTorch 分布式优化器 4.…
[源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之中的优化器 2.1 流程 2.2 使用 0x03 DDP 之中的优化器 3.1 流程 3.2 优化器状态 3.3 使用 0x04 Horovod 的优化器 4.1 hook 同步梯度 4.1.1 注册 hooks 4.1.2 归并梯度 4.1.2.1 MPI 函数 4.1.2.2 原理图 4.2 s…
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0x01 模型构造 1.1 Module 1.2 成员变量 1.3 _parameters 1.3.1 构建 1.3.2 归类 1.3.3 获取 1.4 Linear 1.4.1 使用 1.4.2 定义 1.4.3 解释 0x02 Optimizer 基类 2.1 初始化 2.2 添加待优化变量 2.…
[源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer 目录 [源码解析] PyTorch 分布式(14) --使用 Distributed Autograd 和 Distributed Optimizer 0x00 摘要 0x01 说明 0x02 启动 0x03 Trainer 0x04 模型 4.1 组件 4.1.1 参考代码 4.1.2 分布式修改 4.2 RNN 模型 4.3 分布式优化器 4.4…
[源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 目录 [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 0x00 摘要 0x01 综述 0x02 基础网络 0x03 辅助函数 0x04 启动 4.1 启动方式 4.2 启动脚本 4.3 启动参数服务器 4.4 启动worker 4.5 建立参数服务器 0x05 TrainerNet 5.1 总体代码 5.2 生成参数服务器 5.3 建立rref 5.4 前向…
[源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x01 前言 1.1 先决条件 1.2 基础知识 1.3 代码 0x02 启动 2.1 总体启动 2.2 启动参数服务器 0x03 参数服务器 0x04 Trainer 0x05 对比 0xFF 参考 0x00 摘要 在前面的文章之中,我们已经学习了PyTorch 分布式的基本模块,接下来我们通过几篇文…
[源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 目录 [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 0x00 摘要 0x00 综述 0x01 启动 0x03 支撑系统 3.1 功能 3.2 使用 3.2.1 混合模型 3.2.2 使用 3.3 定义 3.4 主要函数 0x04 HybridModel 0x05 训练 5.1 初始化 5.2 训练循环 0x06 比对 0xFF 参考 0x00 摘要 在前面的文章之中,…
[源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行 目录 [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行 0x00 摘要 0x01 综述 1.1 先决条件 1.2 基础知识 0x02 启动 0x03 定义训练循环 0x04 将 ResNet50 模型分片拼接成一个模块 0x05 对 ResNet50 模型进行分区 0xFF 参考 0x00 摘要 在前面的文章之中,我们已经学习了PyTorch 分布式的基本模块,接下来我们通过…
[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0x03 TorchElastic 3.1 历史 3.1.1 PyTorch 1.7 3.1.2 PyTorch 1.9 3.2 设计理念 3.2.1 基本功能 3.2.2 新设计概述 3.2.3 bare-bones 3.3 小结 0x04 问题 4.1 VS Horovod 4.2 TE 问题 0…
[源码解析] PyTorch 分布式(1)------历史和概述 目录 [源码解析] PyTorch 分布式(1)------历史和概述 0x00 摘要 0x01 PyTorch分布式的历史 1.1 Multiprocessing 1.2 THD 底层库 1.3 torch.distributed 库 1.4 c10d库 1.5 RPC框架 1.6 弹性训练 1.7 流水线训练 0x02 分布式概述 2.1 引论 2.1.1 torch.distributed 包 2.1.2 知识链接 2.2…
[源码解析] PyTorch 分布式(2) ----- DataParallel(上) 目录 [源码解析] PyTorch 分布式(2) ----- DataParallel(上) 0x00 摘要 0x01 综述 1.1 从流程上看 1.2 从模式角度看 1.3 从操作系统角度看 1.4 低效率 0x02 综述 2.1 示例 2.2 相关知识 0x03 定义 3.1 定义 3.2 负载均衡 0x04 前向传播 4.1 总述 4.2 分发(输入) 4.2.1 scatter_kwargs 4.2.…
[源码解析] PyTorch 分布式(5) ------ DistributedDataParallel 总述&如何使用 目录 [源码解析] PyTorch 分布式(5) ------ DistributedDataParallel 总述&如何使用 0x00 摘要 0x01 数据并行 0x02 DDP 运行逻辑 0x03 VS DataParallel 3.1 本质区别 3.2 实现区别 0x04 使用 4.1 基本示例 4.1.1 设置进程组 4.1.2 简单模型 4.1.3 处理速度偏…
[源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇 目录 [源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇 0x00 摘要 0x01 原文摘要 0x02 引论 2.1 挑战 2.2 实现和评估 0x03 背景 3.1 PyTorch 3.2 数据并行 3.3 AllReduce 0x04 系统设计 4.1 API 4.2 梯度规约 4.2.1 A Naive So…
[源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 目录 [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 0x00 摘要 0x01 综述 1.1 数据并行 1.2 DDP架构 1.2.1 分布式数据并行 1.2.2 进程 1.3 DDP 总体实现 0x02 初始化 2.1 __init__ 2.2 构建参数 2.2.1 _build_params_for_reducer…
[源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer 目录 [源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer 0x00 摘要 0x01 引论 1.1 调用 1.2 参数说明 0x02 Reducer 初始化 2.1 构造函数 2.2 初始化桶 2.3 初始化视图 2.3.1 BucketReplica成员变量 2.3.2 调用 2.4 初始化…
[源码解析] PyTorch 分布式 Autograd (1) ---- 设计 目录 [源码解析] PyTorch 分布式 Autograd (1) ---- 设计 0x00 摘要 0x01 分布式RPC框架 1.1 RPC 框架 1.2 PyTorch RPC 四大支柱 1.3 RRef 1.3.1 假设条件 1.3.2 同步调用 1.3.2 异步调用 0x02 示例 0x03 前向传播期间的 Autograd 记录 0x04 分布式 Autograd 上下文 0x05 分布式反向传播 5.1…
[源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 目录 [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 0x00 摘要 0x01 回顾 0x02 执行GraphTask 2.1 runEngineAndAccumulateGradients 2.2 execute_graph_task_until_ready_queue_empty 2.3 evaluate_function 2.4 globalCpuThread 2…
[源码解析] PyTorch 分布式之 ZeroRedundancyOptimizer 目录 [源码解析] PyTorch 分布式之 ZeroRedundancyOptimizer 0x00 摘要 0x01 历史 1.1 Github说明 1.2 解析 0x02 背景知识 2.1 ZeRO 2.2 Fairscale 的 ZeRO 实现 2.3 Optimizer State Sharding (OSS) 2.3.1 训练流程 2.3.2 最佳实践 2.3.3 性能说明 0x03 如何使用 3.…
[源码解析] PyTorch 分布式(3) ----- DataParallel(下) 目录 [源码解析] PyTorch 分布式(3) ----- DataParallel(下) 0x00 摘要 0x01 前向操作 1.1 并行 1.2 Gather 1.2.1 Python世界 1.2.2 C++世界 0x02 计算损失 0x03 后向传播 3.1 分发梯度 3.1.1 Gather.backward 3.1.2 Scatter 3.1.3 C++ 3.2 并行后向传播 3.3 归并梯度 3…
[源码解析] PyTorch 分布式(4)------分布式应用基础概念 目录 [源码解析] PyTorch 分布式(4)------分布式应用基础概念 0x00 摘要 0x01 基本概念 0x02 设计思路 2.1 通信需求 2.2 概念 0x03 设置 0x04 点对点通信 0x05 集合通信 0x06 分布式训练 0x07 Ring-Allreduce 0x08 高级主题 8.1 通信后端 8.1.1 后端种类 8.1.2 使用哪个后端? 8.1.3 Gloo 后端 8.1.4 MPI后端…
[源码解析] PyTorch 分布式之弹性训练(2)---启动&单节点流程 目录 [源码解析] PyTorch 分布式之弹性训练(2)---启动&单节点流程 0x00 摘要 0x01 重要概念 0x02 分布式运行 2.1 方式改变 2.1.1 原有方式 2.1.2 目前方式 2.2 部署 2.3 示例 2.3.1 单节点多worker启动 2.3.2 容错方式启动 2.3.3 弹性方式启动 0x03 启动脚本 3.1 参数定义 3.2 相关函数/变量 world_size,rank _p…
[源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑 目录 [源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑 0x00 摘要 0x01 总体背景 0x02 基本概念 2.1 Barrier 2.2 排他性(Exclusivity) 2.3 一致性(Consistency) 2.4 容错(Fault-tolerance) 2.5 共享键值存储 2.6 等待worker和rendezvous关闭 2.7 DynamicR…
[源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 0x00 摘要 0x01 数据加载 1.1 加速途径 1.2 并行处理 1.3 流水线 1.4 GPU 0x02 PyTorch分布式加载 2.1 DDP 2.2 分布式加载 0x03 DistributedSampler 3.1 初始化 3.2 迭代方法 3.3 shuffle数据集 3.3…
[源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 前情回顾 0x02 DataLoader 2.1 初始化 2.2 关键函数 2.3 单进程加载 2.3.1 区分生成 2.3.2 迭代器基类 2.3.3 单进程迭代器 2.3.4 获取样本 2.4 多进程加载 2.4.1 总体逻辑 2.4.2 初始化 2.4.3 业务重置 2.4.4 获取 inde…
[源码解析] PyTorch分布式(6) ---DistributedDataParallel -- 初始化&store 目录 [源码解析] PyTorch分布式(6) ---DistributedDataParallel -- 初始化&store 0x00 摘要 0x01 回顾 1.1 基本概念 1.2 初始化进程组 0x02 初始化 2.1 初始化方法 2.2 init_method VS store 2.3 rendezvous 2.4 小结 0x03 Store 3.1 _rend…
[源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组 目录 [源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组 0x00 摘要 0x01 回顾 1.1 基础概念 1.2 初始化进程组 0x02 概念与设计 2.1 功能 2.2 本质 0x03 使用 0x04 构建 4.1 Python 世界 4.1.1 rendezvous 4.1.2 _new_process_group_…
[源码解析] PyTorch 分布式(10)------DistributedDataParallel之Reducer静态架构 目录 [源码解析] PyTorch 分布式(10)------DistributedDataParallel之Reducer静态架构 0x00 摘要 0x01 引论 1.1 调用 0x02 Reducer 定义 0x03 Bucket 3.1 设计 3.2 定义 3.2.1 BucketReplica有几个 3.2.2 关键 3.2.3 具体定义 3.3 设置 0x03…
[源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播 目录 [源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播 0x00 摘要 0x01 总体逻辑 0x02 Python 世界 0x03 C++世界 3.1 准备前向传播 3.2 重建桶 3.2.1 计算桶尺寸 3.2.2 同步桶indices 3.2.3 初始化桶 3.3 准备后向传播 3.3.1 重置 3.3.…
[源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 目录 [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 0x00 摘要 0x01 回顾 1.1 前文回顾 1.2 总体逻辑 0x02 从Hook开始 2.1 如何注册hook 2.1.1 AutogradMeta 2.1.2 Node 2.1.3 AccumulateGrad 2.2 构造函数 2.2.1 g…
[源码解析] PyTorch 分布式 Autograd (2) ---- RPC基础 目录 [源码解析] PyTorch 分布式 Autograd (2) ---- RPC基础 0x00 摘要 0x01 示例 0x02 RPC 基础 2.1 初始化 2.1.1 初始化后端 2.1.2 生成代理 2.1.3 设置代理 2.1.4 静态类变量 2.2 RPC 代理 2.2.1 RpcAgent 2.2.2 ProcessGroupAgent 2.2.3 TensorPipeAgent 2.2.4 回…