最大熵模型The Maximum Entropy】的更多相关文章

http://blog.csdn.net/pipisorry/article/details/52789149 最大熵模型相关的基础知识 [概率论:基本概念CDF.PDF] [信息论:熵与互信息] [最优化方法:拉格朗日乘数法] [参数估计:贝叶斯思想和贝叶斯参数估计] [参数估计:最大似然估计MLE] 皮皮blog 最大熵模型The Maximum Entropy 最大熵原理是在1957 年由E.T.Jaynes 提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但熵…
引入1:随机变量函数的分布 给定X的概率密度函数为fX(x), 若Y = aX, a是某正实数,求Y得概率密度函数fY(y). 解:令X的累积概率为FX(x), Y的累积概率为FY(y). 则 FY(y) = P(Y <= y) = P(aX <= y) = P(X <= y/a) = FX(y/a), 则 fY(y) = d(FX(y/a)) / dy = 1/a * fX(x/a) 引入2:如何定义信息量 某事件发生的概率小,则该事件的信息量大: 如果两个事件X和Y独立,即p(xy)…
熵的概念在统计学习与机器学习中真是很重要,熵的介绍在这里:信息熵 Information Theory .今天的主题是最大熵模型(Maximum Entropy Model,以下简称MaxEnt),MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最好的模型:若概率模型需要满足一些约束,则最大熵原理就是在满足已知约束的条件集合中选择熵最大模型.最大熵原理指出,对一个随机事件的概率分布进行预测时,预测应当满足全部已知的约束,而对未知的情况不要做任何主…
0,熵的描述 熵(entropy)指的是体系的混沌的程度(可也理解为一个随机变量的不确定性),它在控制论.概率论.数论.天体物理.生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量.熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中.后来在,克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将熵的概念引入到信息论中来.----baidu 下面我们将从随机变量开始一步一步慢慢理解熵. 1,随机变量(rand…
我们知道,线性回归能够进行简单的分类,但是它有一个问题是分类的范围问题,只有加上一个逻辑函数,才能使得其概率值位于0到1之间,因此本次介绍逻辑回归问题.同时,最大熵模型也是对数线性模型,在介绍最大熵模型的同时需要了解拉格朗日对偶法对约束最优化问题的求解,在文章末有几个关于牛顿法的链接,可供拓展阅读.   内容: 1 logistic regression model1.1 logistic distribution1.2 binary logistic regression model1.3 模…
原文:https://www.cnblogs.com/Twobox/p/16791412.html 熵 熵:表述一个概率分布的不确定性.例如一个不倒翁和一个魔方抛到地上,看他们平稳后状态.很明显,魔方可能有6种状态,而不倒翁很大可能就一个状态,那么我们说在这种情况下,不倒翁的确定性高于魔方.也就是魔方的熵大于另外一个.那么我看表达式: \(H(p)=-\sum_i^n P_i logP_i\) 很明显,当p的概率是0或1时,没有不确定性,熵值为0.当为0.5时,熵最大,最不确定. 相对熵 htt…
1. 最大熵原理 最大熵Max Entropy原理:学习概率模型时,在所有可能的概率模型(即概率分布)中,熵最大的模型是最好的模型. 通常还有其他已知条件来确定概率模型的集合,因此最大熵原理为:在满足已知条件的情况下,选取熵最大的模型. 在满足已知条件前提下,如果没有更多的信息,则那些不确定部分都是“等可能的”.而等可能性 通过熵最大化来刻画. 最大熵原理选取熵最大的模型,而决策树的划分目标选取熵最小的划分.原因在于: 最大熵原理认为在满足已知条件之后,选择不确定性最大(即:不确定的部分是等可能…
解释1: 他的假设服从指数分布族 解释2: 最大熵模型,即softmax分类是最大熵模型的结果. 关于最大熵模型,网上很多介绍: 在已知部分知识的前提下,关于未知分布最合理的推断就是符合已知知识最不确定或最随机的推断,其原则是承认已知事物(知识),且对未知事物不做任何假设,没有任何偏见. 所以,最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型. 参考网址: https://blog.csdn.net/xg123321123/article/details/54286514 对于输…
声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用.欢迎转载,但请注明出处(即:本帖地址). 2,因为本人在学习初始时有非常多数学知识都已忘记.所以为了弄懂当中的内容查阅了非常多资料,所以里面应该会有引用其它帖子的小部分内容,假设原作者看到能够私信我,我会将您的帖子的地址付到以下. 3.假设有内容错误或不准确欢迎大家指正. 4.假设能帮到你,那真是太好了. IIS的推导过程 IIS是一种最大熵学习模型的最优化算法.其推导步骤例如以下: 目标是通过极大似然预…
目录 logistic回归和最大熵模型 1. logistic回归模型 1.1 logistic分布 1.2 二项logistic回归模型 1.3 模型参数估计 2. 最大熵模型 2.1 最大熵原理 2.2 最大熵模型 2.3 最大熵模型的学习 3. 极大似然估计 4. 最大熵与logistic回归的关系 5. 总结 6. Reference logistic回归和最大熵模型 1. logistic回归模型   logistic回归是一种广义线性回归(generalized linear mod…