HDU4651 Partition 【多项式求逆】】的更多相关文章

hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;…
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模. 多项式求逆主要思路 我们考虑用递推的做法 假设我们当前已知F(x)H(x)=1(mod xi/2) 要求的是F(x)Q(x)=1(mod xi) 因为F(x)Q(x)=1(mod xi) 所以F(x)Q(x)=1(mod xi/2) 可得F(x)(Q(x)-H(x))=0(mod xi/2) 显…
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减去不可行的方案数就行了 (容斥) 令 \(f_i\) 为有 \(i\) 个点的无向有标号连通图个数 . 考虑 \(1\) 号点的联通块大小 , 联通块外的点之间边任意 但 不能与 \(1\) 有间接联系 . 那么就有 \[\displaystyle f_i = 2^{\binom i 2} - \s…
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个点的无向图个数,这个方案是\(2^{\frac{i(i-1)}{2}}\)(也就是考虑每条边选不选) 考虑如何得到\(g\) \[g(n) = \sum_{i=0}^n C_{n-1}^{i-1}f(i) g(n-i)\] 直接将\(2^{\frac{n(n-1)}{2}}\)带入然后化简一下可以得…
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制\(j\)种颜色恰好出现\(S\)次,其他颜色随意染的方案数.可以通过生成函数知道 \(\begin{align*} c_j &= \binom{m}{j} n! [x^n] (\frac{x^k}{k!})^j (\sum\limits_{i=0}^\infty \frac{x^i}{i!})^{m…
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 把一棵子树替换成根的的左子树或右子树. 定义\(k\)连树为一棵只有恰好\(k\)个叶子的满二叉树,如果某个节点有一个右孩子,那么这个右孩子一定是一个叶子. 对于给定的\(k\)和\(n\),对于所有在\(1\)到\(n\)之间的\(i\),你需要求出所有叶子节点恰好为\(i\),且不包含\(k\…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…