这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来. 然后因为原根的一个条件是与p互质,所以可以把欧拉函数的值求出来尝试一下 打印出来,就可以发现规律 答案就是phi(p-1) 暴力找答案代码 #include<cstdio> #include<cmath> #include<cstring> #include<cc…
题目传送门 Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5434   Accepted: 3072 Description We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 }…
(x, y)被看到仅当x与y互质 由此联想到欧拉函数 x=y是1个点,然后把正方形分成两半,一边是φ(n) 所以答案是2*∑φ(n)+1 #include<cstdio> #include<cctype> #define REP(i, a, b) for(int i = (a); i < (b); i++) #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; typedef…
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^(p-1)=1 (mod p).这和求原根有一定联系. 再顺便提一下欧拉定理:若 a,n 互质,那么 a^Φ(n)=1(mod n).    还有一个推论:若x = y(mod φ(n) 且 a与n 互质,则有 a^x=a^y(mod n). 百度百科是这么说的:"原根,归根到底就是 x^(p-1)=…
强烈鸣谢wddwjlss 题目大意:给出一个奇素数,求出他的原根的个数,多组数据. 这里先介绍一些基本性质 阶 设\((a,m)=1\),满足\(a^r \equiv 1 \pmod m\)的最小正整数r叫做整数a模m的阶 那么给出一个定理: 设\((a,m)=1\),r为a摸m的阶,则对于每个正整数k,\(a^k \equiv 1 \pmod m\) 当且仅当\(r|k\),特别地,\(r|\phi(m)\) 阶的一些性质 设\((a,m)=1\),r为a摸m的阶,当且仅当二条件成立: \(a…
直接套模板,这道题貌似单独求还快一些 解法一 #include<cstdio> #include<cctype> #define REP(i, a, b) for(int i = (a); i < (b); i++) #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; typedef long long ll; const int MAXN = 21234567; int…
题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p-1}. 思路:题目的实质就是问p有多少原根. 下面是百度对原根的解释: 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 假设一个数g是P的原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,归根到底就…
何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a)=k 当k=(p-1)时,称a是p的原根每个素数恰好有f(p-1)个原根(f(x)为欧拉函数) 定理:对于奇素数m, 原根个数为phi(phi(m)), 由于phi(m)=m-1, 所以为phi(m-1).某大牛的证明: {xi%p | 1 <= i <= p - 1} = {1,2,...,p…
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int maxn = 1000015; bool u[maxn]; ll su[maxn]; ll num; ll…
欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int Euler(int n) { int res=n; ;i*i<=n;i++) { ) { n/=i; res-=(res/i); ) n/=i; } }…