机器学习--Classifier comparison】的更多相关文章

最近在学习机器学习,学习和积累和一些关于机器学习的算法,今天介绍一种机器学习里面各种分类算法的比较 #!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. T…
Google发布机器学习平台Tensorflow游乐场-带你玩神经网络 原文地址:http://f.dataguru.cn/article-9324-1.html> 摘要: 昨天,Google发布了Tensorflow游乐场.Tensorflow是Google今年推出的机器学习开源平台.而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理.今 ... 网络 工具 机器学习 神经网络 Tensorflow 昨天,Google发…
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能队伍. 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders 7. [Bayesian] “我是bayesian我怕谁”系列 - Bo…
scikit-learn: machine learning in Python — scikit-learn 0.20.0 documentation https://scikit-learn.org/stable/index.html Simple and efficient tools for data mining and data analysis Accessible to everybody, and reusable in various contexts Built on Nu…
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).…
昨天,Google发布了Tensorflow游乐场.Tensorflow是Google今年推出的机器学习开源平台.而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理.今天,就让硅谷周边带你一起去Tensorflow游乐场快乐地玩耍吧!   昨天,Google深度学习部门Google Brain的掌门人,也是Google里受万众景仰的神级别工程师Jeff Dean,在Google Plus上发布了Tensorflow游乐场的…
一.引言 在开始算法介绍之前,让我们先来思考一个问题,假设今天你准备出去登山,但起床后发现今天早晨的天气是多云,那么你今天是否应该选择出去呢? 你有最近这一个月的天气情况数据如下,请做出判断. 这个月下雨的天数占10% 这个月早晨是多云的天数占40% 在下雨的天数中早晨是多云的占50% 如果有普通本科的概率论知识,这个问题就不难解决,计算一下今天会下雨的概率,然后根据概率决定即可.解决方式如下: 可以发现,今天下雨的概率只有12.5%,还是可以出去玩的(当然如果怕万一,那还是呆在家里). 二.B…
weka中实现了很多机器学习算法,不管实验室研究或者公司研发,都会或多或少的要使用weka,我的理解是weka是在本地的SparkML,SparkML是分布式的大数据处理机器学习算法,数据量不是很大的时候,使用weka可以模拟出很好的效果,决定使用哪个模型,然后再继续后续的数据挖掘工作. 下面总结一个eclipse中调用weka的Classifier分类器代码的Demo,通过这个实例,可以进一步跟踪分类算法的原理,查看weka源码,下一节中,介绍最简单的IB1(1NN)算法源码的具体分析. 以下…
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大多数现象.而且因为线性模型本质上是均值预测,而大部分事物的变化都只是围绕着均值而波动,即大数定理. 事物发展的混沌的线性过程中中存在着某种必然的联结.事物的起点,过程,高潮,衰退是一个能被推演的过程.但是其中也包含了大量的偶然性因素,很难被准确的预策,只有一个大概的近似范围.但是从另一方面来说,偶然…
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/60140664.在这里,我按自己的理解再整理一遍. 在机器学习中,我们有时需要解决分类问题.也就是说,给定一个样本的特征值(feature1,feature2,...feauren),我们想知道该样本属于哪个分类标签(label1,label2,...labeln).即:我们想要知道该样本各个标签的条件概…
一.Hard Voting 与 Soft Voting 的对比 1)使用方式 voting = 'hard':表示最终决策方式为 Hard Voting Classifier: voting = 'soft':表示最终决策方式为 Soft Voting Classifier: 2)思想 Hard Voting Classifier:根据少数服从多数来定最终结果: Soft Voting Classifier:将所有模型预测样本为某一类别的概率的平均值作为标准,概率最高的对应的类型为最终的预测结果…
程序实现 softmax classifier, 含有三个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1) f2=w2h1+b2 h2=max(0,f2) f3=w3h2+b3 h3=max(0,f3) f4=w4h3+b4 y=ef4i∑jef4j function Out=Softmax_Classifier_3(train_x, train_y, opts) % activation funct…
程序实现 softmax classifier, 含有两个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1) f2=w2h1+b2 h2=max(0,f2) f3=w3h2+b3 y=ef3i∑jef3j function Out=Softmax_Classifier_2(train_x, train_y, opts) % setting learning parameters step_size=op…
程序实现 softmax classifier, 含有一个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1) f2=w2h1+b2 y=ef2i∑jef2j function Out=Softmax_Classifier_1(train_x, train_y, opts) % setting learning parameters step_size=opts.step_size; reg=opts.r…
程序实现 Softmax classifer, 没有隐含层, f=wx+b y=efi∑jefj %% Softmax classifier function Out=Softmax_Classifier(train_x, train_y, opts) % setting learning parameters step_size=opts.step_size; reg=opts.reg; batchsize = opts.batchsize; numepochs = opts.numepoch…
一.开发与评价一个异常检测系统 异常检测算法是一个非监督学习算法,意味着我们无法根据结果变量…
前言 参考 1.级联分类器: 完…
最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logistic Regression 多分类逻辑回归 Multinomial Logistic Regression 特征x x=([x1,x2,...,xn,1])T 权重w w=([w1,w2,...,wn,b])T 目标y 实数(负无穷大到正无穷大) 两个类别 1,-1 两个类别 0,1 多个类别 c…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知识,需要慢慢地理解.我也是通过看别人的博客理解SVM的. 推荐大家看看on2way的SVM系列: 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系列(二):SVM的理论基础 解密SVM系列(三):SMO算法原理与实战求解 解密SVM系列(四):SVM非线性分类原理实验 基本概念 SVM -…
原文地址:[ZZ]计算机视觉.机器学习相关领域论文和源代码大集合作者:计算机视觉与模式 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码. 最近一次更新:2013-1-29 一. 特征提取Feature Extraction: SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Project] Affine-SIFT [3] [Project] SURF [4]…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
python机器学习实战(一) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7140974.html  前言 这篇notebook是关于机器学习中监督学习的k近邻算法,将介绍2个实例,分别是使用k-近邻算法改进约会网站的效果和手写识别系统.操作系统:ubuntu14.04    运行环境:anaconda-python2.7-notebook    参考书籍:机器学习实战      notebook  writer ----方阳  k-…
现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于python 2.7的,但是我安装的是python 3.6.2. 所以很关键的是,你必须得有一定的python基础.这里我推荐runoob的py3教程,通俗易懂.http://www.runoob.com/python3/python3-tutorial.html 注意:python2和python3是不兼容的 p…
沉淀再出发:使用python进行机器学习 一.前言 使用python进行学习运算和机器学习是非常方便的,因为其中有很多的库函数可以使用,同样的python自身语言的特点也非常利于程序的编写和使用. 二.几个简单的例子 2.1.使用python实现KNN算法 ######################################### # kNN: k Nearest Neighbors # Input: newInput: vector to compare to existing dat…
一.概述 k-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理:首先有一个样本数据集合(训练样本集),并且样本数据集合中每条数据都存在标签(分类),即我们知道样本数据中每一条数据与所属分类的对应关系,输入没有标签的数据之后,将新数据的每个特征与样本集的数据对应的特征进行比较(欧式距离运算),然后算出新数据与样本集中特征最相似(最近邻)的数据的分类标签,一般我们选择样本数据集中前k个最相似的数据,然后再从k个数据集中选出出现分类最多的分类作为新数据的分类. 二.优缺点 优点:精度高.对…
''' Created on Nov 06, 2017 kNN: k Nearest Neighbors Input: inX: vector to compare to existing dataset (1xN) dataSet: size m data set of known vectors (NxM) labels: data set labels (1xM vector) k: number of neighbors to use for comparison (should be…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
Spark机器学习 1 在线学习 模型随着接收的新消息,不断更新自己:而不是像离线训练一次次重新训练. 2 Spark Streaming 离散化流(DStream) 输入源:Akka actors.消息队列.Flume.Kafka.-- http://spark.apache.org/docs/latest/streaming-programming-guide.html 类群(lineage):应用到RDD上的转换算子和执行算子的集合 3 MLib+Streaming应用 3.0 build…