caffe的cancat层】的更多相关文章

我在训练Goolenet inception-v3时候出现了concat错误,因此写下concat层的一些知识点,以供读者跳坑 concat层在inception-v3网络中存在非常明显,之所以需要concat层是由于在之前的卷积池化层进行了卷积核大小的变化 卷积核大小变化的出发点:1.减小sobel算子维度,从而降低整个卷积层的参数,如,将5*5的卷积转化为2个3*3的卷积,其参数多少就会由25个转化为9+9=18个,在卷积层的卷积核转化时 还会有这种操作:将n*n的卷积转化为1*n和n*1并…
原文地址: https://blog.csdn.net/u011668104/article/details/81532592 --------------------------------------------------------------------------------------- caffe里面用BN层的时候通常后面接一下scale层,原因如下: caffe 中为什么bn层要和scale层一起使用这个问题首先你要理解batchnormal是做什么的.它其实做了两件事. 1)…
一:数据层及参数 caffe层次有许多类型,比如Data,Covolution,Pooling,层次之间的数据流动是以blobs的方式进行 首先,我们介绍数据层: 数据层是每个模型的最底层,是模型的入口,通常数据的 预处理(如去均值,放大缩小,裁剪和镜像等)也在这一层设置参数实现. 数据来源一般来自高效的数据库(levelDb和LMDB),也可以来自内存,如果注重效率,可以来自磁盘的hdf5文件和图片格式文件. 层次实例如下: layer{ name:"cifar" type: &qu…
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov's Accelerated Gradient (type: "Nes…
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中:…
最近实验当中借鉴了FPN网络,由于FPN网络对图片shape有要求,采用了两种方式,其一是在data_layer.cpp中,对原图进行padding操作:其二是需要对特征图进行类似crop操作,使得两者进行eltwise操作的时候shape是一致的. 简单说一下添加padding的操作,在data_layer.cpp的DataSetup()和load_batch()函数中添加: //cv_img是读入的原图像,ext_img是填充pad的图像 //extRows,extCols是填充的行和列,具…
原文地址: https://blog.csdn.net/elysion122/article/details/79628587 ------------------------------------------------------------------------------------------------- 因为最近在将一个caffe的model移植到pytorch上,发现移植过去就没法收敛了,因此专门研究了一些细节. batch normalization的公式如下: caffe…
借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logisti…
现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请参考: http://caffe.berkeleyvision.org/tutorial/interfaces.html 原图…
1.Forward_cpu conv_layer.cpp template <typename Dtype> void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { // blobs_声明在 layer.hpp 中,vector<shared_p…