[高斯消元] POJ 2345 Central heating】的更多相关文章

Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Description Winter has come, but at the Ural State University heating is not turned on yet. There's one little problem: the University is heated only if…
Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 678   Accepted: 310 Description Winter has come, but at the Ural State University heating is not turned on yet. There's one little problem: the University is heated only if…
[题目链接] http://poj.org/problem?id=2345 [题目大意] 给出n个开关和n个人,每个人可以控制一些开关,现在所有的开关都是关着的 一个指令可以让一个人掰动所有属于他控制的开关,使得开关的状态变化, 现在要求求出最少的指令,使得开关全开,按字典序输出指令的人 [题解] 我们将人的操作作为变元建立方程组,因为一个人相同的两次操作对结果是没有影响的 我们可以认为这是无效操作,所以每个人操作的次数只是一次或者零次, 我们解01方程组即可得到答案. [代码] #includ…
开关问题 Problem's Link: http://poj.org/problem?id=1830 Mean: 略 analyse: 增广矩阵:con[i][j]:若操作j,i的状态改变则con[i][j]=1,否则con[i][j]=0. 最后的增广矩阵应该是N*(N+1),最后一列:对比开光的始末状态,若相同则为0,若不同则为1: 最后的解共有三种:1.无解,既出现了一行中前面N个数为0,第N+1的值非0:2.没有第1种情况出现,存在X行数值全为0,则解的个数为2^X;3,没有1,2 两…
http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2])+...+(x[1,n]*a[n])=x[1, n+1] (mod m) (x[2,1]*a[1])+(x[2,2]*a[2])+...+(x[2,n]*a[n])=x[2, n+1] (mod m) ... (x[n,1]*a[1])+(x[n,2]*a[2])+...+(x[n,n]*a[n])…
POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something…
题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最后均为0. 思路:高斯消元,记录变元个数,枚举变元. int a[N][N],ans[N]; vector<int> b; int Gauss() { b.clear(); int i,j=1,k,t; for(i=1;i<=20;i++) { for(k=j;k<=20;k++) i…
开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任务是,计算有多少种可以达到指定状态的方法.(不计开关操作的顺序) Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第…
[题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了数字,周围四格都会发生变化,变化即做一次与1的异或运算,输出每个格子的操作次数. [题解] 高斯消元练手题,对于每个格子的最终情况列一个方程,一共三十个方程三十个未知数,用高斯消元求解即可. [代码] #include <cstdio> #include <algorithm> #in…
题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详解 代码: #include<queue> #include<cstring> #include<set> #include<map> #include<stack> #include<cmath> #include<vector&…
思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态为:u[1]*mp[1][i]^u[2]*mp[2][i]....^u[n]*mp[n][i](或者改为相加 % 2).显然,前式等于B[i],所以,问题转化为了求u的解个数:MP*U = B.注意MP矩阵的写法. 关于矩阵: r(A) = r(A,b)           有解 r(A) = r(…
http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是要处理自由变元,如果自由变元为0,那么刷法是唯一的,如果有多个自由变元,那么可以有多种刷法,需要枚举处理. 借鉴了kuangbin大神的高斯消元模板,写得真的是好. #include<iostream> #include<algorithm> #include<cstring&g…
http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1表示按,0表示不按. 思路:每个开关最多只按一次,因为按了2次之后,就会抵消了. 可以从结果出发,也就是全灭状态怎么按能变成初始状态. 用3*3来举个例子,$X\left ( i,j \right )$表示这些开关是按还是不按,那么对于第一个开关,对它有影响的就只有2.4这两个开关,所以它的异或方程…
题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题解:首先可以用高斯消元来做,对于每个点,我们列出一个方程,左边是某个点和它相邻的点,他们的异或值等于右边的值(灯亮为1 ,灯灭为0),然后求一个异或高斯消元就可以了.可以用bitset优化,或者__int128优化(其实unsigned就可以了). 还可以枚举第一行的按开关的状态共有1<<6中状态…
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http://poj.org/problem?id=1753 http://poj.org/problem?id=3185 这几个题目都类似,都可以使用高斯消元来求解一个模2的01方程组来解决. 有时候需要枚举自由变元,有的是判断存不存在解 POJ 1222 EXTENDED LIGHTS OUT 普通的问题.…
http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为前边消元一定会使得后边的方程左式为0) 高斯消元自由变元:自由变元就是当这些未知量一旦确定,整个方程就确定了.但是这些量是未知的.(例如x+y=5,自由变元就是1,因为无论是x还是y确定,另一个就能唯一确定),而答案要求的是方案,那么显然因为自由变元是可以随便赋值的,而这些值只有2个,开和不开,那么…
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7676   Accepted: 3036 Description The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (pro…
任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7667   Accepted: 3624 Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bric…
任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10742 Accepted: 4314 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开…
开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8714   Accepted: 3424 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作…
Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45691   Accepted: 19590 Description Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the…
EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6929 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons ea…
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我自己想了想,就用了高斯消元 + 费马小定理.因为%p是质数,所以很容易就用上了费马小定理,就是在除法的时候用一次就好了.还有就是两个模数相乘还要模一次. #include <cstdio> #include <cstdlib> #include <cstring> #inc…
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2…
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的编号. 此题注意最后结果要调整到3-9之间. 思路: 非常easy想到高斯消元. 可是是带同余方程式的高斯消元,開始建立关系的时候就要MOD 7 解此类方程式时最后求解的过程要用到扩展gcd的思想,举个样例,假设最后得到的矩阵为:     1  1   4     0  6   4    则6 * X2 %…
id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. 注意依据自由变元求其它解及求最优值的方法. #include <stdio.h> #include <algorithm> #include <set> #include <map> #include <vector> #include <ma…
EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 6246 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons eac…
题目链接 题意:翻译过来就是20个0或1的开关,每次可以改变相邻三个的状态,问最小改变多少次使得所有开关都置为0,题目保证此题有解. 题解:因为一定有解,所以我们可以正序逆序遍历两次求出较小值即可.当然这题也可以用万能的高斯消元来做.给出两种代码. 暴力代码: #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm>…
题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为按两次跟没有按是一样的效果.那么 对于每一个灯,用1表示按,0表示没有按,那么每个灯的状态的取值只能是0或1.列出30个方程,30个变元,高斯消元解出即可.打表观察我们可以发现5*6的矩阵是一定有解的,主对角线元素都是1所以一定有唯一解. 打表代码: #include <iostream> #in…
Description The widget factory produces several different kinds of widgets. Each widget is carefully built by a skilled widgeteer. The time required to build a widget depends on its type: the simple widgets need only 3 days, but the most complex ones…