还需要加强分析题目特殊性质,设计对应特殊算法,少想多写大力dfs剪枝不要管MLETLE直接上的能力 红包是一个有艺术细胞的男孩子. 红包由于NOI惨挂心情不好,暑假作业又多,于是他开始在作业本上涂鸦. 一开始,他在纸上画了一棵 nn 个节点的树.但是他觉得这样的画太简单了,体现不出他高超的绘画功底,于是他又额外画上了 kk 条边. 然而他觉得这样画面太复杂,于是想删去一些边使得这个无向图仍然是连通的. 请帮红包求出删边的方案数.两个方案被认为是不同的当且仅当存在一条边在其中一组中被删而另一组中没…
Description 红包是一个有艺术细胞的男孩子. 红包由于NOI惨挂心情不好,暑假作业又多,于是他开始在作业本上涂鸦. 一开始,他在纸上画了一棵 n 个节点的树.但是他觉得这样的画太简单了,体现不出他高超的绘画功底,于是他又额外画上了 k 条边. 然而他觉得这样画面太复杂,于是想删去一些边使得这个无向图仍然是连通的. 请帮红包求出删边的方案数.两个方案被认为是不同的当且仅当存在一条边在其中一组中被删而另一组中没有.(什么边都不删也算一种方案) Solution 首先发现可能被删除的边一定是…
4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和LCA的灵活运用吧: 设f[i][j][65]表示i到2^j-1的线性基集合 跑LCA,边跑边暴力合并路径上的线性基咯,最后find_max一下xor的最大值就好啦 槽点:注意^符号的优先级还有空间大小...有点恶心 代码: #include<cstdio> #include<cstring…
[CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游…
XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0…
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概率就是\(\frac{1}{2}\) 证:把\(a_j\)拿出来,那么剩下的里面选出的子集不管是什么情况,\(a_j\)放进去或不放肯定有一种能使\(x\)的第\(i\)位为\(1\),且另一种使\(x\)的第\(i\)位为\(0\),那么概率就是\(\frac{1}{2}\) 然后是\(k=2\)…
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long long,因此考虑另辟蹊径.注意到答案 \(\le 2^{63}-1\),也就是说当 \(k\) 比较大时值域也不会太大.因此考虑对 \(k\) 分类讨论. \(k=1\) 时考虑计算每一位的贡献,注意到对于一位 \(i\),如果存在某个 \(a_j\) 满足 \(a_j\) 的 \(2^i\) 位为 \…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ 位为 $1$ ,则对答案的贡献为 $2^i/2$ . k=2 : 发现每个异或和的平方为 $\sum_i\sum_j2^{i+j}bit_ibit_j$.那么考虑第 $i$ 位和第 $j$ 位的积的期望值.如果所有的数中,第 $i$ 位和第 $j$ 位均相等且非全零,那么参考 k=1 的情况,期望为…
BZOJ UOJ 感觉网上大部分题解对我这种数学基础差的人来说十分不友好...(虽然理解后也觉得没有那么难) 结合两篇写的比较好的详细写一写.如果有错要指出啊QAQ https://blog.csdn.net/smallsxj/article/details/73205569 https://www.cnblogs.com/wujiechao/p/7781140.html 首先题目要求输出精确的小数,由下面的推导可知答案要么是整数,要么是一位小数\(.5\),不会是\(.25,\ .125\)什…
#include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) {return x>y?x:y;} ];}Tree[Maxn*Len]; void Insert(int x) { ; bool k; ;i--) { k=x&(<<i); ) Tree[Now].next[k]=++cnt; Now=Tree[Now].next[k]; } } i…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大…
学了新的忘了旧的,还活着干什么 题意:一些盒子,每步可选择打开盒子和取出已打开盒子的任意多石子,问先手是否必胜 搬运po姐的题解: 先手必胜的状态为:给出的数字集合存在一个异或和为零的非空子集,则先手必胜 证明: 首先我们有状态A:当前的所有打开的箱子中的石子数异或和为零,且所有关闭的箱子中的石子数的集合中不存在一个异或和为零的非空子集 易证A状态时先手必败 先手有两种操作: 1.从一个打开的箱子中拿走一些石子 那么根据Nim的结论 后手可以同样拿走一些石子使状态恢复为A状态 2.打开一些箱子…
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017-02-19]加入线性基 [update 2017-03-31]完善内容,改用markdown Gauss Elimination 高斯消元(Gaussian elimination)是求解线性方程组的一种算法,它也可用来求矩阵的秩,以及求可逆方阵的逆矩阵. 它通过逐步消除未知数来将原始线性系统转化为另一个更…
2844: albus就是要第一个出场 题意:给定一个n个数的集合S和一个数x,求x在S的$2^n$个子集从小到大的异或和序列中最早出现的位置 一开始看错题了...人家要求的是x第一次出现位置不是第x个是谁 求出线性基后我们知道一共有$2^r$个不同的数,再知道每个数出现了几次就好啦 每个数出现了$2^{n-r}$次....因为有$n-r$个线性相关(高斯消元后全0了)的方程异或不影响.... 然后就简单了,从高到低枚举二进制位,异或这一位后小于k就加上 #include <iostream>…
以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高斯消元判断是否和已选择的线性相关 每一位记录pivot[i]为i用到的行 枚举要加入的数字的每一个二进制为1的位,如果有pivot[i]那么就异或一下(消元),否则pivot[i]=这个数并退出 如果最后异或成0了就说明线性相关... #include <iostream> #include &l…
题目大意 给出 \(n\) 个非负整数,将数划分成两个集合,记为一号集合和二号集合.\(x_1\) 为一号集合中所有数的异或和,\(x_2\) 为二号集合中所有数的异或和.在最大化 \(x_1 + x_2\) 的前提下,最小化 \(x_1\). \(n\leq 100000,0\leq a_i\leq {10}^8\) 题解 记 \(s=a_1\operatorname{xor} a_2\operatorname{xor} a_3\operatorname{xor} \cdots\operato…
https://codeforces.com/contest/1101/problem/G 题意 一个有n个数字的数组a[],将区间分成尽可能多段,使得段之间的相互组合异或和不等于零 题解 根据线性基的定义(线性无关),任意线性基组成的集合的异或和都不会等于0,因为假如等于零,说明一定存在一个基能被其他基异或表示 依次将数组a插入线性基中,最后非0线性基的数量就是答案 代码 #include<bits/stdc++.h> #define ll long long #define M 20000…
题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个图组成的集合有多少个子集的异或图为一个连通图. \(n\leq 10,m\leq 60\) 题解 考虑枚举图的子集划分,让被划分到不同子集的点之间没有连边,而在同一个子集里面的点可以连通,可以不连通. 可以用高斯消元(线性基)得到满足条件的图的个数.设枚举的子集划分有\(k\)个集合,那么容斥系数就…
题目链接 题意:给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 \(T \subseteq S\), 使得集合 T 在 S 的所有非空子集的不同的异或和中, 其异或和 \(T_1 \mathbin{\text{xor}} T_2 \mathbin{\text{xor}} \ldots \mathbin{\text{xor}}T_{|T|}\)是第 k 小的. /* 1.照例建立线性基 2.使得线性基中有且只有base[i]的第i位为1 3.记录所有有值的base[] 从低位到…
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1\) , 那么边 \((u, v)\) 在 \(G\) 中, 否则这条边不在 \(G\) 中. 现在给定 \(s\) 个结点数相同的图 \(G_{1...s}\) , 设 \(S = {G_1, G_2, \cdots , G_s}\) , 请问 \(S\) 有多少个子集的异或为一个连通图? \(n…
[BZOJ1299]巧克力棒(博弈论,线性基) 题面 BZOJ 题解 \(Nim\)博弈的变形形式. 显然,如果我们不考虑拿巧克力棒出来的话,这就是一个裸的\(Nim\)博弈. 但是现在可以加入巧克力棒.加入巧克力棒的意义是修改当前的异或和. 如果不能够改变当前先后手赢的状态的话,那么必定不能够拿出一个巧克力棒的集合满足异或和为\(0\). 初始情况下是先手必败的情况,因为先后不改变当前的必胜/必败情况,所以先手必须要拿出一个异或和为\(0\)的集合,并且使得剩下的部分不能够存在异或和为\(0\…
P3812 [模板]线性基 理解 :线性基 类似于 向量的极大无关组,就是保持原来所有数的异或值的最小集合, 求解过程也类似,可以 O( 60 * n )的复杂度求出线性基,线性基有许多性质,例如 线性基 里面的数进行异或 的值域与原来所有数异或的值域相同. #include<bits/stdc++.h> using namespace std; #define ll long long #define maxn 123 ll n,a[maxn],ans,p[maxn]; void getji…
传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1},N]\),那么我们选择出来的子段的异或和为\(x_{i_1} , x_{i_2}\ xor\ x_{i_1},...,x_{i_{k-1}}\ xor\ x_N\). 又因为我们需要避免的是任意子段集合的异或和不为\(0\),那么将这些异或和互相异或对于这个命题是否成立不会产生影响.那么从第二项开…
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原…
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 给定集合$S$,现在将任意$A\subseteq S$中的元素求异或和,然后存入一个数组中(下标从1开始),然后从小到大排一个序.问$q$第一次出现在$A$中的下标. 我们可以通过线性基得到值域上有多少个异或和比$q$小,现在问题来了,怎么求$q$的下标. 通过打表找规律,以及手动枚举可以发现一个结论. 定理1 设线性基为$B$,那么在$S$的子集的异或和中,出现的异或和的出现的次数是$2^{\left | S \ri…
原文链接https://www.cnblogs.com/cly-none/p/9711279.html 题意:求有多少个非空集合\(S \subset N\)满足,\(\forall a,b \in S, a \bigotimes b \in S\),且\(S\)中的最大元素不超过\(n\).对\(10^9 + 7\)取模. \(n \leq 10^9\) 显然,每个合法的集合\(S\)都可以由一个线性基来生成.然而,一个集合可以有多个线性基.如果我们能让每个合法集合和每个符合某条件的线性基一一…
You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maximum number of segments in such a way that: each element is contained in exactly one segment; each segment contains at least one element; there doesn't…
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样. 如果你先拿…
题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1\ \text{xor}\ T_2\ \text{xor}\ …\ \text{xor}\ T_{|T|}​$ 是第 $k​$ 小的.求这个第 $k$ 小的异或和. 题解 线性基+特判 板子题没什么好说的,直接求出严格线性基,由于每个最高位只有一个因此按位判断即可. 关键在于一个特判:原来的可重集可…
题目链接 BZOJ2322 题解 鉴于BZOJ2115,要完成此题,就简单得多了 对图做一遍\(dfs\),形成\(dfs\)树,从根到每个点的路径形成一个权值,而每个返祖边形成一个环 我们从根出发去走一个环再回到根,最终会异或上环的权值而又回到根 所以环是可以任意选的 我们把环的权值丢进线性基,记线性基中有\(tot\)各位置,那么环的权值异或和方案数就是\(2^{tot}\) 我们将剩余路径权值放入线性基中消元后去重,剩余的路径权值是和线性基中的权值线性无关的 但路径只能选一个,记有\(x\…