SVM的新理解】的更多相关文章

svm导出的原始问题然后利用KKT条件,为何还需要对偶空间? 一方面,实际上KKT条件怎么得到的?KKT条件的推导是:svm原始问题->极大极小问题(先算极小这步,但极小这步中α是有约束的,不好求)->满足某些条件(如凸的等)->极小极大问题(先算极大这步,α约束条件跑到第二步,极大这步没约束)->推导出KKT条件. 另一方面,如果没有对偶空间,对于非线性问题,第一步先映射到线性,第二步再使用最大间隔线性分类.这样的时间花费很大,于是,考虑用核函数.核函数的优点就是将这两步合在一起…
对SVM的个人理解 之前以为SVM很强大很神秘,自己了解了之后发现原理并不难,不过,“大师的功力在于将idea使用数学定义它,使用物理描述它”,这一点在看SVM的数学部分的时候已经深刻的体会到了,最小二乘法.梯度下降法.拉格朗日乘子.对偶问题等等被搞的焦头烂额.在培乐园听了讲课之后才算比较清晰的了解了整个数学推导的来龙去脉. 1. 为什么一定要研究线性分类? 首先说一下为什么对数据集一定要说线性可分或线性不可分,难道不可以非线性分开吗?想要非线性分开当然可以,实际上SVM只是把原来线性不可分的数…
SVM问题再理解与分析--我的角度 欢迎关注我的博客:http://www.cnblogs.com/xujianqing/ 支持向量机问题 问题先按照几何间隔最大化的原则引出他的问题为 上面的约束条件就是一个不等式约束, 可以写成 这个是SVM的基本型 对它引入拉格朗日乘子,即对上式添加拉格朗日乘子该问题的拉格朗日函数可以写成: 对偶问题 先定义一个概念:Wolfe对偶:定义问题是凸优化问题的对偶 再定义一个概念:约束规格: 考虑一般约束问题 在式(6)的可行域,在这个约束函数都是可微函数,引进…
catalan数的新理解h[5]==h[4][0]+h[3][1]+h[2][2]+h[1][3]+h[0][4];对于这种递推式就是catalan数…
原文:http://blog.csdn.net/arthur503/article/details/19966891 之前以为SVM很强大很神秘,自己了解了之后发现原理并不难,不过,“大师的功力在于将idea使用数学定义它,使用物理描述它”,这一点在看SVM的数学部分的时候已经深刻的体会到了,最小二乘法.梯度下降法.拉格朗日乘子.对偶问题等等被搞的焦头烂额.在培乐园听了讲课之后才算比较清晰的了解了整个数学推导的来龙去脉. 1. 为什么一定要研究线性分类? 首先说一下为什么对数据集一定要说线性可分…
一直以来对this的理解只在可以用,会用,却没有去深究其本质.这次,借着<JavaScript The Good Parts>,作了一次深刻的理解.(所有调试都可以在控制台中看到,浏览器F12键) 下面我们一起来看看这个this吧. 在我们声明一个函数时,每个函数除了有定义时的parameters(形参),自身还会有额外的两个参数,一个是this,一个是arguments(实参).arguments就是函数实际接受到的参数,是一个类数组.arguments我只做个简略的介绍,重点我们放在thi…
最近几天,对Delphi控件的含义有了一个新的理解.其实它不仅仅是给程序员提供功能的一个表层调用,控件本身的源代码就是一个很强的工业级源码.而且它的Main例子,往往就已经是半成品.而别的语言里没有那么多控件——换句话说,就是没有那么多工业级项目的源代码(往往都是通用工具类型)供你使用和学习(两层意思).这是我们Delphier独一无二的优势.不得不说,当年设计Delphi的两位老兄Anders Hejlsberg和Chuck Jazdzewski真是双剑合璧,无敌于天下——当然,只是产品无敌于…
https://blog.csdn.net/leonis_v/article/details/50688766 特征空间的隐式映射:核函数    咱们首先给出核函数的来头:在上文中,我们已经了解到了SVM处理线性可分的情况,而对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题. 此外,因为训练样例一般是不会独立出现的,它们总是以成对样例的内积形式出现,而用对偶形式表示学习器的优势在为在该表示中可调参数的个数不依赖输入…
springmvc 中@Controller和@RestController的区别 1. Controller, RestController的共同点 都是用来表示spring某个类的是否可以接收HTTP请求 2.  Controller, RestController的不同点 @Controller标识一个Spring类是Spring MVC controller处理器 @RestController: @RestController是@Controller和@ResponseBody的结合体…
一.基础理解 1)简介 SVM(Support Vector Machine):支撑向量机,既可以解决分类问题,又可以解决回归问题: SVM 算法可分为:Hard Margin SVM.Soft Margin SVM,其中 Soft Margin SVM 算法是由 Hard Margin SVM 改进而来: 2)不适定问题 不适定问题:决策边界不唯一,可能会偏向某一样本类型,模型泛化能力较差: 具有不适定问题的模型的特点:决策边界不准确,泛化能力较差: 原因:模型由训练数据集训练所得,训练数据集…