poj2368 Buttons Nim取石子游戏】的更多相关文章

链接:http://poj.org/problem?id=2368 和前面差距还是很大啊囧 代码: k,a;main(i){,i=;i<=k/&&k%i;++i);k%i||(a=i-);printf("%d\n",a);} 短码之美那本书上面的这道题目的代码思路是对的,可是会TLE的. 可是ozy的代码还是那么短得可怕…
具体看:萌新笔记之Nim取石子游戏可以这么写: #include <bits/stdc++.h> using namespace std; typedef long long LL; int bit[35]; void solve(int n) { int num=0; while(n) { n%2==1?bit[num]++:bit[num]; n/=2; num++; } } int main() { int n,x; scanf("%d",&n); memse…
以下笔记摘自计算机丛书组合数学,机械工业出版社. Nim取石子游戏 Nim(来自德语Nimm!,意为拿取)取石子游戏. 前言: 哇咔咔,让我们来追寻娱乐数学的组合数学起源! 游戏内容: 有两个玩家面对若干堆东西(硬币,石子,豆子···)进行游戏.设有k≥1堆硬币,各堆分别含有n1,n2...nk枚硬币. 游戏规则: (1):游戏中两个人交替进行游戏(我们称第一个取的为1号,第二个取的为2号). (2):当玩家取石子的时候,先选择硬币中的一堆,然后可以从堆中取走任意数量的硬币. 当所有的堆为空时,…
这道题的结论就是,石子的个数为斐波那契数列某一项的时候,先手必败:否则,先手必胜. 结论很简单,但是证明却不是特别容易.找了好几篇博客,发现不一样的也就两篇,但是这两篇给的证明感觉证得不清不楚的,没看太懂. 首先,证明要依赖一个邓肯多夫定理(Zeckendorf's Theorem):任何一个正整数一定能分解成若干个不重复且不相邻的斐波那契数之和. 首推维基百科上的英文证明,很严谨也能看懂,证明的过程中还用到了一条引理,但是很容易用数学归纳法证明,所以整个过程都是十分严谨的:http://en.…
小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. N≤10 Ai≤1000 裸SG函数啊 然而我连SG函数都不会求了,WA了一会儿之后照别人代码改发现vis公用了... #include <iostream> #include <cstdio> #include <cstring> #includ…
[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved: 122 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这种,每一个人每次能够从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,假设有,第一步怎样取石子. In…
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了. Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略. Input 文件的第一行为一个整数T,表示有 T组测试数据.对于每组测试数据,第一行为一个整数n,表示有n堆石子:第二行为n个整数ai,依次表示…
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了. Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略. Input 文件的第一行为一个整数T,表示有 T组测试数据.对于每组测试数据,第一行为一个整数n,表示有n堆石子:第二行为n个整数ai,依次表示…
Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了. Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略. Input 文件的第一行为一个整数T,表示有 T组测试数据.对于每组测试数据,第一行为一个整数n,表示有n堆石子:第二行为n个整数ai,依次表示…
题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子, 可以将那一堆全部取掉,但不能不取,不能操作的人就输了. Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略. T≤10 n≤1000 每堆的石子数目≤1e9 思路:From http://www.cnblogs.com/zcwwzdjn/archive/2012/05/…