scale-free network】的更多相关文章

在看WGCNA的时候看到的一个术语. 先来看一个随机网络:没有中心节点,大部分节点都均匀的连在一起. 再看一下scale free network:大部分的连接都集中在少数的中心 如何检验一个网络是否是scale free network? A. Log-log plot of whole-network connectivity distribution. The x-axis shows the logarithm of whole network connectivity, y-axis…
http://technet.microsoft.com/en-us/library/bb742455.aspx Abstract Network Load Balancing, a clustering technology included in the Microsoft Windows 2000 Advanced Server and Datacenter Server operating systems, enhances the scalability and availabilit…
原文链接:http://lihailian.bokee.com/6013647.html 1.什么是无尺度现象? 统计物理学家习惯于把服从幂次分布的现象称为无尺度现象. 在做大量统计实验之前,科学家预测,连接数k应当服从泊松分布或正态分布,即每个网站的被访问量差异不会太大,就像人类身高差异不会太大那样.然而,实测结果推翻了这个预测.Barabasi等人设计了一种软件,可以从一个节点跳到另一节点,收集并记录网上的所有连接.在对几十万个节点进行统计后发现:在绝大多数网站的连接数很少的情况下,却有极少…
网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网络表示学习相关资料 https://blog.csdn.net/u013527419/article/details/74853633 NE(Network Embedding)论文小览 https://blog.csdn.net/Dark_Scope/article/details/7427958…
Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横空出世,似乎一切东西都在被embedding,今天我们要关注的这个领域是Network Embedding,也就是基于一个Graph,将节点或者边投影到低维向量空间中,再用于后续的机器学习或者数据挖掘任务,对于复杂网络来说这是比较新的尝试,而且取得了一些效果. 本文大概梳理了最近几年流行的一些方法和…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
转自http://prinx.blog.163.com/blog/static/190115275201211128513868/和http://www.cnblogs.com/jie465831735/archive/2013/03/06.html 按如下顺序看效果最佳: 1.       MapReduce Simplied Data Processing on Large Clusters 2.       Hadoop环境的安装 By 徐伟 3.       Parallel K-Mea…
转自http://www.dataguru.cn/forum.php?mod=viewthread&tid=286174 随着互联网的快速发展,涌现出了一大批以Facebook,Twitter,人人,微博等为代表的新型社交网站.这些网站用户数量的迅速增长使得海量的用户数据不断被产生出来,而如何有效地对这些海量的用户数据进行社交网络分析(Social Network Analysis)正成为一个越来越热门的问题.本文向大家介绍由IBM中国研究院和北京邮电大学合作开发的X-RIME开源库(http:…
大数据计算:如何仅用1.5KB内存为十亿对象计数  Big Data Counting: How To Count A Billion Distinct Objects Using Only 1.5K This is a guest post by Matt Abrams (@abramsm), from Clearspring, discussing how they are able to accurately estimate the cardinality of sets with bi…
人群计数的方法分为传统的视频和图像人群计数算法以及基于深度学习的人群计数算法,深度学习方法由于能够方便高效地提取高层特征而获得优越的性能是传统方法无法比拟的.本文简单了秒速了近几年,基于单张图像利用CNN估计人群密度图和计数的方法. 传统的人群计数方法 传统的人群计数方法可以分为两类,基于检测的方法和基于回归的方法. 基于检测的方法 早期的计数方法主要是基于检测的方法,使用一个滑动窗口来检测场景中的人群,并统计人数. 基于检测的方法可以分为两类: 基于整体的检测,训练一个分类器,利用从行人全身提…