最长上升子序列(LIS)nlogn模板】的更多相关文章

LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N.比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等.这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8). 求解…
给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列. Output 最长上升子序列的长度   题解   这里给出两种方法,先说经典版本的,设dp[i]表示以以 a[i]为结尾的LST的长度,n方的暴力很好想,显然我们在i之间找到一个最大的LST,且要保证a[j]<a[i],那么显然dp[i]=max(dp[i],dp[j]+1),那么这个dp显然就是在i之前找到一个以小于a[i…
  题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=1000001<=n<=1000001<=n<=100000 和On^2算法不同,dp数组存储的不再是子序列长度了,而是一个最小的递增子序列.用len这个变量存储最小子序列的长度(或者说末尾位置),当a[i]>dp[len]时直接把a[i]添加到子序列的末尾,当a[i]<=dp…
最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想. 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长递增子序列的长度,则状态转移方程为: dp[i] = max{dp[j]+1}, 1<=j<i,a[j]<a[i]. 这样简单的复杂度为O(n^2),其实还有更好的方法. 考虑两个数a[x]和a[y],x&…
最长递减子序列(nlogn): int find(int n,int key) { ; int right=n; while(left<=right) { ; if(res[mid]>key) { left=mid+; } else { right=mid-; } } return left; } int Lis(int a[],int n) { ; res[r]=a[]; r++; ;i<n;i++) { ]>a[i]) { res[r]=a[i]; r++; } else {…
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输…
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound()的主要区别在于前者返回第一个大于目标值的位置 int lowerBound(int x){ int l=1,r=n; while(l<=r){ int mid=(l+r)>>1; if (x>g[mid]) l=mid+1; else r=mid-1; } return l; } in…
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路: \(n^2\)很好做,不赘述. 这里有个很好的一点就是两个序列都一定是全排列,说明两个序列的元素出现的位置不一样而已,但是数字是一样的. 通过\(vis\)来记录\(A\)序列的数字出现的位置,自然也可以对应到\(B\)的位置. 接下来的步骤看样例解释一下吧. 比如说\(A\)串:\(3\ 2\…
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外的数组 LIS 来记录 长度从1 到 n 慢慢变长求解的过程中 对应长度的 最长递增子序列的最小的末尾元素 解决方法 长度为1时 {3}: 将3放入LIS中,表示长度为1的时候,{3}数组的最长递增子序列的最小微元素 LIS:{3} 只有一个元素,所以 最长递增子序列就是 {3},最长递增子序列的最…
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就是序列A和B的最长公共子序列LCS,即LIS(A) = LCS(A,B).时间复杂度为n^2. 思路二:动态规划.时间复杂度为n^2,可以进一步优化为n^lgn. [代码]  C++ Code  1234567891011121314151617181920212223242526272829303…