1815: [Shoi2006]color 有色图 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 136  Solved: 50[Submit][Status] Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 N< P < = 10^ 9 Output 即总数模P后的余数 Sample Input input 1 3 2 97 Sample Output…
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得两张图对应的边的颜色是一样的,我们就称这两张有色图是同构的. 对于计算所有顶点数为 \(n\) ,颜色种类不超过 \(m\) 的图,最多有几张是两两不同构的图. 数据范围 \(n \le 53, 1 \le m \le 1000\) 题解 神仙题qwq 我们考虑对于点置换与其对应的边置换的关系: 对…
传送门 题意: 染色图是无向完全图,且每条边可被染成k种颜色中的一种.两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同.问N个顶点,k种颜色,本质不同的染色图个数(模质数N≤53,P<109). 想了一节课和一中午又看了课件 相同类型的循环合并的想法很巧妙 首先,点的置换对应唯一边的置换,我们可以枚举所有点的置换,找出每个置换下边置换的循环有多少个,然后套$Polya$公式 但是复杂度带叹号 我们发现,很多点置换类型是一样的,我们可以对$n$搜索划分来枚举点置换的类…
参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题 首先无向完全图是个若干点的置换,但是实际上要染色边,也就是要求边的置换 首先,通过dfs构造一个点的置换,然后再把每个置换分割加起来就是答案(实际上分割方案很少) 那么现在有一个点置换的长度(a1,a2,a3...),考虑边置换,一条边(pi,pj),如果pi,pj在不同的置换里,那么显然循环节是lcm(ai,aj),所以循环个…
BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 N< P < = 10^ 9 Output 即总数模P后的余数 Sample Input input 1 3 2 97 Sample Output output 1 4 题解Here! 经典Polya计数. 不想再写一遍了,正解戳这里.…
题目传送门:洛谷 P4128. 计数好题,原来是 13 年前就出现了经典套路啊.这题在当年应该很难吧. 题意简述: \(n\) 个点的完全图,点没有颜色,边有 \(m\) 种颜色,问本质不同的图的数量对质数 \(p>n\) 取模. 本质不同指的是在点的 \(n!\) 种不同置换下不同. 题解: 首先有 \(\mathrm{P\acute{o}lya}\) 定理:一类元素在一个置换群的作用下本质不同的元素(不同等价类)个数等于 \(\frac{1}{|G|}\sum_{g\in G}M(g)\).…
题意 用 \(m\) 种颜色,给 \(n\) 个点的无向完全图的 \(\frac{n(n-1)}{2}\) 条边染色,两种方案相同当且仅当一种方案交换一些点的编号后可以变成另一种方案.问有多少本质不同的染色方案. \(n\le 53, m\le 1000, n<mod\le 10^9\) 且 \(mod\) 为质数. 分析 考虑 \(Polya​\) 定理. 假设已经枚举了一个点置换(对应唯一一种边置换),能否快速求出对应边的置换的循环个数? 对于两个点的循环(设长度分别为 \(l_1,l_2\…
http://www.lydsy.com/JudgeOnline/problem.php?id=1815 这道题好难啊,组合数学什么根本不会啊qwq 题解详见08年的Pólya计数论文. 主要思想是只枚举具有代表性的点的置换,算出这些点的置换造成的边的置换的保持不变的着色数(边的置换的保持不变的着色数我想了一天啊_(:з」∠)_),最后再乘上与这种具有代表性的点的置换同类的点的置换总数就可以了. WA了好几次,中间一个地方忘取模了qwq #include<cstdio> #include<…
首先发现这题虽然是边的置换,但是是由点的置换所造成的,并且发现点置换对应的所有边置换和置换操作构成置换群. 由于颜色可以全选,那么根据 Polya 定理,答案为: \[|X / G| = \frac{1}{|G|}\sum\limits_{g \in G} |B| ^ {c(g)} \] 注意到不同点的置换对应边置换不同,那么只需要考虑每个点置换对应边置换的贡献之和. 对于一个点置换,发现一个点循环置换内部导出子图的边一定置换到另一条也在导出子图当中的边,因此考虑分边循环置换是否在导出点循环置换…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [思路] 对于一个置换,如果分解后的到的循环长度为 A1,A2,A3… 则答案为lcm(A1,A2…)的不同种数,即有多少个不同的lcm满足: A1+A2+A3+…=n lcm=lcm(A1,A2,A3…) 对于A[1..]的lcm, lcm=a1^max{p1}*a2^max{p2}.. 因为很多情…
不想看题解的请速撤离 为防被骂灌输题解,撤离缓冲区 这里没字 $Ploya$神题一道,所以我自己做不出来,颓了一部分题解. 由于理(颓题)解不(没)深(脸)中途又拿了$std$对拍(输出中间结果并qj了自己的代码) 但是启示的确很多 按照题面意思来看,好像是点的交换,但是不是..本题中的置换其实是边与边的置换 因为显然颜色是涂在边上的,至于点的交换可以看成接向两个点的边集的交换 但是归根到底还是先有点动再有边动,所以我们仍然考虑将通过点的置换来求出边的等价置换. 发现没有关于颜色使用的限制,所以…
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem 10983 18765 Y 1036 [ZJOI2008]树的统计Count 5293 13132 Y 1588 [HNOI2002]营业额统计 5056 13607 1001 [BeiJing2006]狼抓兔子 4526 18386 Y 2002 [Hnoi2010]Bounce 弹飞绵羊 43…
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理,貌似思考的时候少了一些乐趣啊. 考虑一个置换 \(p\),想要求出这个置换下的不动点的个数.对于一个不动点,若存在一条边 \((a, b)\),一定存在一条边 \((p_a, p_b)\). 那么考虑一个长度为 \(l\) 的循环,若 \((i, j)\) 是一条 \(i, j\) 均在循环中的点…
P4128 [SHOI2006]有色图 题目描述 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图.如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得两张图对应的边的颜色是一样的,我们就称这两张有色图是同构的.以下两张图就是同构的,因为假如你把第一张图的顶点\((1,2,3,4)\)置换成第二张图的\((4,3,2,1)\),就会发现它们是一样的. 你的任务是,对于计算所有顶点数为\(n\),颜色种类不超…
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i,j,k) = dp(x,i-cntx,j,k)+dp(x,i,j-cntx,k)+dp(x,i,j,k-cntx)表示前x个置换红蓝绿个用了i,j,k次,cntx表示第x个置换的循环数. 然后最后乘(M+1)的乘法逆元就OK了. -----------------------------------…
传送门 流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostmonkey要按照以下规则重新排列这些盒子. 规则由5个数描述,q,p,m,d,s,s表示空位的最终位置.首先生成一个序列c,c0=0,ci+1=(ci*q+p) mod m.接下来从第一个盒子开始依次生成每个盒子的最终位置posi,posi=(ci+d*xi+yi) mod n,xi,yi是为了让第i个盒子不与之前的盒子位置相同的由你设定的非负整数,且posi还不能为s.如果有多个xi,…
传送门:现在$POI$上的题洛谷都有了,还要$BZOJ$干什么 和$cow\ sorting$一样,只不过问$a_i \rightarrow b_i$ 注意置换是位置而不是数值...也就是说要$i$的数值$a_i$要变到$b$中数值$a_i$的位置 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using name…
置换数量是阶乘级别的,但容易发现本质不同的点的置换数量仅仅是n的整数拆分个数,OEIS(或者写个dp或者暴力)一下会发现不是很大,当n=53时约在3e5左右. 于是暴力枚举点的置换,并且发现根据点的置换我们得到的实际上是边的置换,暴力数一下循环节就好了.3e5*50*50,luogu上过掉了.诶怎么bzoj上开的时限总共只有4s啊? 考虑数边置换的循环节时不那么暴力.显然两端点在同一循环内的边和在不同循环内的边是不可能处于同一边的循环的,并且第一种情况只与该循环长度有关,第二种情况只与两循环长度…
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用> --陈瑜希 burnside: $$等价类的个数=\frac{1}{|G|}\sum_{i=1}^{s}D(a_i), a_i \in G$$其中$D(a_i)=a_i置换中染色后不变的方案$ 而polya: $$D(a_i)=k^{C(a_i)},其中C(a_i)是a_i的循环节个数$$证明很简单…
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i=1}^{k} A_i = n$$ 根据lcm的定义,分解质因数拆掉$A_i=p_1^{x_1} \times p_2^{x_2} \times ... \times p_k^{x_k}$后 $$lcm=\prod_{i} p_i^{max\{x_i\}}$$ 所以我们只看$max\{x_i\}$即可…
http://www.lydsy.com/JudgeOnline/problem.php?id=1697 置换群T_T_T_T_T_T_T 很久以前在黑书和白书都看过,,,但是看不懂... 然后找了本书,,pdf:<组合数学算法与分析1>...还算好,,看懂了.. 看来数学是硬伤.. 我需要一本<组合数学>! ... 好了.本题题解: 目标状态为排序后的,那么我们就建立置换群(原因是可以最小步数得到答案) 如果序列为1 6 5 7 4 那么循环为(1) (6 4 7) (5) 自己…
置换群的部分水得一比,据说是经典的置换群理论(然而我并不知道这理论是啥).重点就在于怎么求pos!!!容易发现这个东西是这样的:每次寻找pos,先在本环里找,找不到再往下一个环里找,直到找到为止……一开始我想二分或者是set,但是感觉会T,然后想了很久之后想到用并查集:就是维护每一个被占用的位置的下一个位置,因为这个位置被占用之后就会转向下一个位置,当然下一个位置有在环内部和在下一个环里两种情况,这两种情况都我都是用并查集维护的,但是一定要注意,不要把这两种情况写成一个并查集,这样路径压缩之后会…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https://www.cnblogs.com/nietzsche-oier/p/6883880.html https://files-cdn.cnblogs.com/files/HocRiser/Burnside.pdf bzoj 1004:这道题注意考虑单位元的那个置换. 然后用 polya 定理即可.不动点…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oier/p/6883880.html https://files-cdn.cnblogs.com/files/HocRiser/Burnside.pdf 原来 burnside 引理中的“不动点”是指一种不变化的方案啊: 这道题就用 burnside 引理,但给出的 m 个置换还不是置换群,需要再加一个…
至今都不知道置换群是个什么东西--题解说什么就是什么.jpg 以下来自hzwer:http://hzwer.com/3905.html #include<iostream> #include<cstdio> #include<algorithm> using namespace std; const int N=10005; int n,w[N],a[N],v[N]; struct qwe { int x,id; }b[N]; bool cmp(const qwe &a…
传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... 通过枚举每个质因子的指数来求$lcm$ $d[i][j]$表示前$i$个质因子当前和为$j$的方案数 转移枚举质因子的指数 但这样我们忽略了可以划分出$1$,所以统计答案时枚举$j$ 或者我们直接初始化$d[0][i]=1$ #include<iostream> #include<cstdi…
Description 给一张 \(n\) 个点的无向完全图,同时还有 \(m\) 种颜色.要求给每条边染色,问有多少种不同的染色方案.两种方案不同当且仅当顶点标号任意重排后不同.\(n\leq 53\). Solution 好吧上课讲的题我还研究了一整个二晚的题解 上课睡觉就是不应该 首先这题要求边的不同染色方案,如果要用 \(burnside\) 或者 \(polya\) 那一套的话需要求边的置换,但是判断方案是否相同又是点的置换.好吧我们考虑点的置换看看在中间能不能统计出来边的置换的方案数…
传送门 数学渣渣看题解看得想死Ծ‸Ծ 首先发现这玩意儿看着很像polya定理 \[L=\frac{1}{|G|}\sum_{i\in G}m^{w(i)}\] 然而polya定理只能用来求点的置换,边的置换是布星的 于是我们考虑一个点的置换,把它写成若干循环的乘积\((a_1,a_2,..)(b_1,b_2,...)...\) 1.对于不在同一个循环里的点,比方说一条边\((a_1,b_1)\),那么和它在同一个循环的边有\(((a_1,b_1),(a_2,b_2),...)\)设\(a\)的循…
传送门 看一眼感觉 $dp$,发现状态没法维护 考虑贪心,然后就想了两个错的贪心... 正解好神啊 首先如果权值最大的点能够一步染色那么肯定要染它 意思就是,一旦父节点被染色那么它就要接着被染色 那么把它们父子两合并成一个新的点,其他节点根据原来的边也连上来 考虑新的点的权值要怎么搞,现在既然这个节点包含了两个点,那么把它染色要两个单位时间,而染其他点只要 $1$ 单位时间 此时染它对整颗树产生的额外的代价为 $2$ 乘其他节点权值和,把其他点 $x$ 染色额外代价为 $1$ 乘其他节点 (非…
学习VFK大神推BZOJ,记录一下学习的东西 1004: burnside:一个置换群的等价计数=(每个置换的置换后等价情况数)/置换总数,每个置换的置换后等价情况数就是置换后没变的数 模意义下的除法:可以使用乘法逆元解,bx mod p=1,x就是b模P的乘法逆元,呢么x≡1/b(mod p),呢么a/b≡ax(mod p),然后用扩展欧几里得求乘法逆元即可(就是解bx mod p=1,某年NOIPT1) 也可以用费马小定理,(a/b)%p=(a/b)%P * b^(p-1)%p=a%p *…