caffe常用】的更多相关文章

1. 关闭模型froward信息 os.environ[' #注意要在improt caffe之前 2. 学习率 step: 配合stepsize,迭代次数达到stepsize的整数倍改变一次, base_lr * gamma ^ (floor(iter/ stepsize)) base_lr: 0.0005display: 50max_iter: 6000000lr_policy: "step"gamma: 0.95momentum: 0.9weight_decay: 0.004st…
通过整理LeNet.AlexNet.VGG16.googLeNet.ResNet.MLP统计出的常用算子(不包括ReLU),表格是对比. Prelu Cpu版 Gpu版 for (int i = 0; i < count; ++i) { int c = (i / dim) % channels / div_factor; top_data[i] = std::max(bottom_data[i], Dtype(0)) + slope_data[c] * std::min(bottom_data[…
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Cheese_pop/article/details/52024980 DATA crop:截取原图像中一个固定patch layers { name: "data" type: DATA top: "data" top: "label" data_param { source: "../data/ImageNet/imagenet-train&…
Windows10制作LMDB详细教程 原创不易,转载请注明出处:https://www.cnblogs.com/xiaoboge/p/10678658.html 摘要: 当我们在使用Caffe做深度学习项目时,经常需要制作Caffe常用的数据类型lmdb.leveldb以及hdf5等(尽管可以使用原始图片,效率低),而不是我们常见的JPG.PNG.TIF.因此,我们需要对我们采集的数据进行格式转换,即通过输入我们自己的图片目录(包含有训练集和验证集的大量图片)转换成一个lmdb库文件的输出:这…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logisti…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括TensorFlow,Keras,MXNet,PyTorch,CNTK,Theano,Caffe,DeepLearning4,Lasagne,Neon,等等.Google,Microsoft等商业巨头都加入了这场深度学习框架大战,当下最主流的框架当属TensorFlow,Keras,MXNet,PyTorch…
本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression的一种推广. Logistic Regression只能用于二分类,而softmax可以用于多分类. softmax与softmax…