LOJ BZOJ 洛谷 又来发良心题解啦 \(Description\) 给定一个序列\(A_i\).求有多少个子区间,满足该区间众数出现次数大于区间长度的一半. \(n\leq5\times10^5,\ 0\leq A_i\lt n\). \(Solution\) 考虑\(x\)作为众数合法的区间有哪些.令\(B_i=[A_i=x]\),对\(B_i\)求个前缀和\(s_i\).那么区间\([l,r]\)合法当且仅当\(s_r-s_{l-1}\gt0\). 其实就是对\(s\)求顺序对个数.用…
[BZOJ5110][CodePlus2017]Yazid 的新生舞会 Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一个子区间[l,r],如果该子区间内的众数在该子区间的出现次数严格大于(r?l+1)/2(即该子区间长度的一半),那么Yazid就说这个子区间是"新生舞会的".所谓众数,即为该子区间内出现次数最多的数.特别地,如果出现次数最多的数有多个,我们规定值最小的数为众数.现在,Yazid想知道,共有…
Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一个子区间[l,r] ,如果该子区间内的众数在该子区间的出现次数严格大于(r-l+1)/2(即该子区间长度的一半),那么Yazid就说这 个子区间是"新生舞会的".所谓众数,即为该子区间内出现次数最多的数.特别地,如果出现次数最多的数有多个 ,我们规定值最小的数为众数.现在,Yazid想知道,共有多少个子区间是"新生舞会的" Input 第一…
题解: 没笔的时候我想了一下 发现如果不是出现一半次数而是k次,并不太会做 然后我用前缀和写了一下发现就是维护一个不等式: 于是就可以随便维护了…
题目描述 求一个序列所有的子区间,满足区间众数的出现次数大于区间长度的一半. 输入 第一行2个用空格隔开的非负整数n,type,表示序列的长度和数据类型.数据类型的作用将在子任务中说明. 第二行n个用空格隔开的非负整数,依次为A1,A2,...,An,描述这个序列. N<=500000,0<=Type<=3 对于所有数据,保证 0 ≤ Ai ≤ n - 1. 对于 type = 0 的数据,没有任何特殊约定. 对于 type = 1 的数据,保证 Ai ∈ {0, 1}. 对于 type…
学习了新姿势..(一直看不懂大爷的代码卡了好久T T 首先数字范围那么小可以考虑枚举众数来计算答案,设当前枚举到$x$,$s_i$为前$i$个数中$x$的出现次数,则满足$2*s_r-r > 2*s_l-l$的区间$[l+1,r]$其众数为$x$,这个显然可以用一个数据结构来维护. 直接扫一遍效率是$O($数字种类数$*nlogn)$的,无法承受,但是我们发现,对于每一段非$x$的数,$2*s_i-i$是公差为$-1$的等差数列,所以它们对答案的贡献实际上可以一次性计算.设$L$为一段非$x$数…
今天原来是平安夜啊 感觉这题是道好题. 一个套路枚举权值\(x\),把权值等于\(x\)的设为1,不等于的设为-1,然后问题转化为多少个区间权值和大于. 发现并不是很好做,还有一个套路,用前缀和查分来表示区间.然后就是 \[i<j\] \[sum[i]<sum[j]\] 然后树状数组可以做\(a[i]\leq7\)的数据. 那么\(a[i]\)那么大该怎么办? 考虑我们构建的\(1,-1\)数列中连续-1的数列很多. 然后这些连续-1不会互相影响的贡献,然后我们考虑直接算出这些连续-1的贡献.…
Description 给定一个长度为 \(n\) 的序列,求有多少子区间满足区间众数严格大于区间长度的一半.如果区间有多个出现次数最多且不同的数则取较小的数为众数. Limitation 对于全部的数据,\(1 \leq n \leq 500000\) 序列中数的值域为 \([0,n)\) 子任务:序列中的数值域为 \([0,7]\) Solution 考虑如果区间有多个出现次数最多且不同的数,那么这个区间显然是不合法的.于是区间出现多个众数取最小的限制其实没有什么 * 用. 考虑枚举区间众数…
题面传送门 题意: 给出一个序列 \(a\),求 \(a\) 有多少个子区间 \([l,r]\),满足这个区间中出现次数最多的数出现次数 \(>\dfrac{r-l+1}{2}\) \(1 \leq n \leq 5\times 10^5\) 首先肯定要枚举出现次数最多的数是什么,假设为 \(x\). 记序列中为 \(x\) 的数为 \(+1\),数列中不为 \(x\) 的数为 \(-1\),那么 \(x\) 出现次数 \(>\dfrac{r-l+1}{2}\) 等价于该区间中对应的数的和 \…
(很久之前刷的题现在看起来十分陌生a) 题意: 给你一个长度为n的序列A,定义一个区间$[l,r]$是“新生舞会的”当且仅当该区间的众数次数严格大于$\frac{r-l+1}{2}$,求有多少子区间是“新生舞会的”. $n\leq 500000,0\leq A_{i} \leq n-1$ 题解: 关于区间众数的问题一般有一个套路:枚举众数后转换成区间求和问题. 考虑枚举众数k,若将序列中等于k的元素视作+1,其他视作-1,那么“新生舞会的“区间必然满足区间之和大于0. 问题变成了如何快速求出有多…