首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
K邻近分类算法
】的更多相关文章
K邻近分类算法
# -*- coding: utf-8 -*- """ Created on Thu Jun 28 17:16:19 2018 @author: zhen """ from sklearn.model_selection import train_test_split import mglearn import matplotlib.pyplot as plt x, y = mglearn.datasets.make_forge() x_trai…
数学建模:2.监督学习--分类分析- KNN最邻近分类算法
1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分类问题是用于将事物打上一个标签,通常结果为离散值.例如判断一副图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上. 本文主要讲基本的分类方法 ----- KNN最邻近分类算法 KNN最邻近分类算法 ,简称KNN,最简单的机器学习算法之一. 核心逻辑:在距离空间里,如果一个样本的最接近的K个邻…
监督学习-KNN最邻近分类算法
分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术建立分类模型,从而对没有分类的数据进行分类的分析方法. 分类问题的应用场景:用于将事物打上一个标签,通常结果为离散值.例如判断一副图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上. 基本的分类方法—KNN最邻近分类算法,简称KNN,是最简单的机器学习算法之一. 核心逻辑:在距离空间里,如果一个样本的最接近的K个邻居里,绝大多数属于某个类别,则该样本也属于这个类别. 给定电影分类…
KNN邻近分类算法
K邻近(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:计算一个点A与其他所有点之间的距离,取出与该点最近的k个点,然后统计这k个点里面所属分类比例最大的,则点A属于该分类. 下面用一个例子来说明一下: 电影名称 打斗次数 接吻次数 电影类型 California Man 3 104 Romance He’s Not Really into Dudes 2 100 Romance Beautiful Wo…
K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(curse of dimension) * Machine Learning的Python库很多,比如mlpy(更多packages),这里实现只是为了掌握方法 * MATLAB 中的调用,见<MATLAB分类器大全(svm,knn,随机森林等)> * KNN算法复杂度高(可用KD树优化,C中可以用…
查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen """ """ 分析n_neighbors的大小对K近邻算法预测精度和泛化能力的影响 """ from sklearn.datasets import load_breast_cancer from sklearn.model…
K邻近回归算法
代码: # -*- coding: utf-8 -*- """ Created on Fri Jul 13 10:40:22 2018 @author: zhen """ import mglearn from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split import matplotlib.pyp…
sklearn_k邻近分类
# K邻近分类#--------------------------------# coding:utf-8 import pandas as pd from sklearn.neighbors import KNeighborsClassifier # 1.创造数据 data=pd.read_excel(r'data1.xlsx',header=None) biaoq=data.columns x_data = data[biaoq[:3]] y_data = data[biaoq[3]] x…
《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征(向量的每个元素)与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的的分类标签.由于样本集可以很大,我们选取前k个最相似数据,然后统计k个数据中出现频率最高的标签为新数据的标签. K邻近算法的一般流程: (1)收集数据:可以是本地数据,也可以从网页抓取. (2)准备数…
监督学习——K邻近算法及数字识别实践
1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. K邻近算法原理很简单,但是真正用好它也不容易,比如K的取值到底为多少才合适,而且知道什么场景下用它更不简单. 缺点: 该算法的执行效率并不高,每次计算都需要将 待识别的用例 与所有测试用例进行求差计算,计算量较大.随着测…