初识Flink广播变量broadcast】的更多相关文章

Broadcast 广播变量:可以理解为是一个公共的共享变量,我们可以把一个dataset 或者不变的缓存对象(例如map list集合对象等)数据集广播出去,然后不同的任务在节点上都能够获取到,并在每个节点上只会存在一份,而不是在每个并发线程中存在.如果不使用broadcast,则在每个节点中的每个任务中都需要拷贝一份dataset数据集,比较浪费内存(也就是一个节点中可能会存在多份dataset数据). import org.apache.flink.api.common.functions…
一. 广播变量 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副本.Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销. Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开.Spark自动地广播每个步骤每个任务需要的通用数据.这些广播数据被序列化地缓存,在运行任务之前被反序列化出来.这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式…
Spark中的Broadcast处理 首先先来看一看broadcast的使用代码: val values = List[Int](1,2,3) val broadcastValues = sparkContext.broadcast(values) rdd.mapPartitions(iter => { broadcastValues.getValue.foreach(println) }) 在上面的代码中,首先生成了一个集合变量,把这个变量通过sparkContext的broadcast函数进…
package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Collection; import java.util.Date; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import…
Flink 广播变量在实时处理程序中扮演着很重要的角色,适当的使用广播变量会大大提升程序处理效率. 本文从简单的 demo 场景出发,引入生产中实际的需求并提出思路与部分示例代码,应对一般需求应该没有什么问题,话不多说,赶紧来看看这篇干货满满的广播程序使用实战吧. 1 啥是广播  Flink 支持广播变量,允许在每台机器上保留一个只读的缓存变量,数据存在内存中,在不同的 task 所在的节点上的都能获取到,可以减少大量的 shuffle 操作. 换句话说,广播变量可以理解为一个公共的共享变量,可…
广播变量.累加器.collect spark集群由两类集群构成:一个驱动程序,多个执行程序. 1.广播变量 broadcast 广播变量为只读变量,它由运行sparkContext的驱动程序创建后发送给会参与计算     的节点.也可被非驱动程序所在节点(即工作节点)访问,访问是调用该变量的value方法. 广播变量是存储在内存中. sc.parallelize(List("1","2","3")).map(x => broadcastAL…
一.概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序.通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变(broadcast variable)和累加器(accumulator) 二.广播变量broadcast variable 2.1 为什么…
一.RDD的概述 1.1 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都…
一.简介 在Spark中,提供了两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable): 累加器:用来对信息进行聚合,主要用于累计计数等场景: 广播变量:主要用于在节点间高效分发大对象. 二.累加器 这里先看一个具体的场景,对于正常的累计求和,如果在集群模式中使用下面的代码进行计算,会发现执行结果并非预期: var counter = 0 val data = Array(1, 2, 3, 4, 5) sc.parallelize(data).fo…
一.简介 在 Spark 中,提供了两种类型的共享变量:累加器 (accumulator) 与广播变量 (broadcast variable): 累加器:用来对信息进行聚合,主要用于累计计数等场景: 广播变量:主要用于在节点间高效分发大对象. 二.累加器 这里先看一个具体的场景,对于正常的累计求和,如果在集群模式中使用下面的代码进行计算,会发现执行结果并非预期: var counter = 0 val data = Array(1, 2, 3, 4, 5) sc.parallelize(dat…
概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序.通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator) 广播变量broadcast variable 为什么要将变量定义成…
一.简介 在 Spark 中,提供了两种类型的共享变量:累加器 (accumulator) 与广播变量 (broadcast variable): 累加器:用来对信息进行聚合,主要用于累计计数等场景: 广播变量:主要用于在节点间高效分发大对象. 二.累加器 这里先看一个具体的场景,对于正常的累计求和,如果在集群模式中使用下面的代码进行计算,会发现执行结果并非预期: var counter = 0 val data = Array(1, 2, 3, 4, 5) sc.parallelize(dat…
Spark--DataFrames,RDD,DataSets 一.弹性数据集(RDD) 创建RDD 1.1RDD的宽依赖和窄依赖 二.DataFrames 三.DataSets 四.什么时候使用DataFrame或者Dataset? 五.广播变量与累加器 5.1 广播变量broadcast variable 5.1.1 广播变量的意义 5.1.2 广播变量图解 5.1.3 如何定义广播变量 5.1.4 如何还原一个广播变量 5.1.5 广播变量的使用 5.1.6 定义广播变量注意点 5.2 累加…
Flink支持广播变量,就是将数据广播到具体的taskmanager上,数据存储在内存中,这样可以减缓大量的shuffle操作: 比如在数据join阶段,不可避免的就是大量的shuffle操作,我们可以把其中一个dataSet广播出去,一直加载到taskManager的内存中,可以直接在内存中拿数据,避免了大量的shuffle,导致集群性能下降: 注意:因为广播变量是要把dataset广播到内存中,所以广播的数据量不能太大,否则会出现OOM这样的问题 Broadcast:Broadcast是通过…
Flink 支持广播变量,就是将数据广播到具体的 taskmanager 上,数据存储在内存中,这样可以减缓大量的 shuffle 操作: 比如在数据 join 阶段,不可避免的就是大量的 shuffle 操作,我们可以把其中一个 dataSet 广播出去,一直加载到 taskManager 的内存中,可以直接在内存中拿数据,避免了大量的 shuffle,导致集群性能下降: 广播变量创建后,它可以运行在集群中的任何 function 上,而不需要多次传递给集群节点.另外需要记住,不应该修改广播变…
概述 近期工作上忙死了--广播变量这一块事实上早就看过了,一直没有贴出来. 本文基于Spark 1.0源代码分析,主要探讨广播变量的初始化.创建.读取以及清除. 类关系 BroadcastManager类中包括一个BroadcastFactory对象的引用.大部分操作通过调用BroadcastFactory中的方法来实现. BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory.HttpBroadcastFactory.这两个子类实现了对H…
[业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广播(Broadcast)功能来提升性能. [原理说明] 在算子函数中使用到外部变量或两表join时,默认情况下,Spark会将该变量或小维表复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本.如果变量本身比较大的话(比如100M,甚至1G),那么大量的变量副本在网络中传输的性能…
A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than shipping a copy of it with tasks. They can be used, for example, to give every node a copy of a large input dataset in an e…
概述 最近工作上忙死了……广播变量这一块其实早就看过了,一直没有贴出来. 本文基于Spark 1.0源码分析,主要探讨广播变量的初始化.创建.读取以及清除. 类关系 BroadcastManager类中包含一个BroadcastFactory对象的引用.大部分操作通过调用BroadcastFactory中的方法来实现. BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory.HttpBroadcastFactory.这两个子类实现了对Htt…
Spark性能调优:广播大变量broadcast 原文链接:https://blog.csdn.net/leen0304/article/details/78720838 概要 有时在开发过程中,会遇到需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时就应该使用Spark的广播(Broadcast)功能来提升性能. 在算子函数中使用到外部变量时,默认情况下,Spark会将该变量复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本.如果变量本…
在Android系统中,广播(Broadcast)是在组件之间传播数据(Intent)的一种机制:这些组件甚至是可以位于不同的进程中,这样它就像Binder机制一样,起到进程间通信的作用:本文通过一个简单的例子来学习Android系统的广播机制,为后续分析广播机制的源代码作准备. 在Android系统中,为什么需要广播机制呢?广播机制,本质上它就是一种组件间的通信方式,如果是两个组件位于不同的进程当中,那么可以用Binder机制来实现,如果两个组件是在同一个进程中,那么它们之间可以用来通信的方式…
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 1.广播变量 广播变量理解图 注意事项 1.能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的.可以将RDD的结果广播出去. 2. 广播变量只能在Driver端定义,不能在Executor端定义. 3. 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量…
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…
Spark中三大数据结构:RDD:  广播变量: 分布式只读共享变量: 累加器:分布式只写共享变量: 线程和进程之间 1.RDD中的函数传递 自己定义一些RDD的操作,那么此时需要主要的是,初始化工作是在Driver端进行的,而实际运行程序是在Executor端进行的,这就涉及到了跨进程通信,是需要序列化的. 传递一个方法 class Search(query: String){ // extends Serializable //过滤出包含字符串的数据 def isMatch(s: Strin…
转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与累加器(accumulator) 累加器用来对信息进行聚合,而广播变量用来高效分发较大的对象. 共享变量出现的原因: 通常在向 Spark 传递函数时,比如使用 map() 函数或者用 filter() 传条件时,可以使用驱动器程序中定义的变量,但是集群中运行的每个任务都会得到这些变量的一份新的副本…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.广播变量 package com.wjy import org.apache.spark.SparkConf import org.apache.spark.SparkContext object GuboVal { def main(args: Array[String]): Uni…
Shared Variables Spark does provide two limited types of shared variables for two common usage patterns: broadcast variables and accumulators. Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than sh…
一.概要 通常情况下,当向Spark操作传递一个函数时,它会在一个远程集群节点上执行,它会使用函数中所有变量的副本.这些变量被复制到所有的机器上,远程机器上并没有被更新的变量会向驱动程序回传.在任务之间使用通用的,支持读写的共享变量是低效的.尽管如此,Spark提供了两种有限类型的共享变量,广播变量和累加器. 二.广播变量 通常情况下,当一个RDD的很多操作都需要使用driver中定义的变量时,每次操作,driver都要把变量发送给worker节点一次,如果这个变量中的数据很大的话,会产生很高的…
Spark广播变量 使用广播变量来优化,广播变量的原理是: 在每一个Executor中保存一份全局变量,task在执行的时候需要使用和这一份变量就可以,极大的减少了Executor的内存开销. Executor中task在执行的时候如果使用到了广播变量,会找Executor里面的BlockManager来获取广播变量. 如果BlockManager中没有这个关闭变量,会从driver端拉取关闭变量. 在Driver端也有一个blockManagerMaster,其他的task执行的时候直接使用b…
一.广播变量图解 二.代码 val conf = new SparkConf() conf.setMaster("local").setAppName("brocast") val sc = new SparkContext(conf) val list = List("hello xasxt") val broadCast = sc.broadcast(list) val lineRDD = sc.textFile("./words.…