网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程组可以得到网格的顶点坐标. 基于网格Laplace形变算法的思想:网格上顶点的Laplace坐标作为网格的细节特征,其在网格形变前后的局部坐标系内不发生变化.Laplace形变问题可以用如下数学优化形式表达,那么问题的关键是如何得到网格形变后的Laplace坐标,或者说是每个顶点Laplace坐标的…
将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格上的控制点集时,网格形变问题即变为求解以下式子: 根据变分法,上式最小化即求解泊松方程: 其中Φ为待求的网格形变后坐标,w为网格形变后的梯度场. 上式可以进一步表示为求解稀疏线性方程组: 其中L为网格的拉普拉斯算子,b为梯度场w在网格顶点处的散度值. 问题的关键是如何得到网格形变后的梯度场w,文章[…
在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et al. 2005]提出的网格形变算法需要求解两次稀疏线性方程组:第一个方程定义了网格上离散坐标系之间的关系,通过求解该方程可以重组每个顶点的坐标系:第二个方程记录了顶点在局部坐标系的位置信息,通过求解该方程可以得到每个顶点的几何坐标. 在网格顶点建立局部坐标系(b1i,b2i,Ni),i∈V.对于…
网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程组可以得到网格的顶点坐标. 基于网格Laplace形变算法的思想:网格上顶点的Laplace坐标作为网格的细节特征,其在网格形变前后的局部坐标系内不发生变化.Laplace形变问题可以用如下数学优化形式表达,那么问题的关键是如何得到网格形变后的Laplace坐标,或者说是每个顶点Laplace坐标的…
数学上曲面的连续光滑形变可以通过最小化能量函数来建模得到,其中能量函数用来调节曲面的拉伸或弯曲程度,那么能量函数最小化同时满足所有边界条件的最优解就是待求曲面. 能量函数通常是二次函数形式: 其中S*代表关于曲面参数u和v的k阶偏导. 对于上述优化问题的求解方法,通常利用变分法得到对应的Euler-Lagrange方程,然后求解该方程得到最优解.对于二次能量函数形式,其对应的Euler-Lagrange方程为如下多阶调和方程: 例如对于,那么对应的Euler-Lagrange方程就是2阶Lapl…
将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格上的控制点集时,网格形变问题即变为求解以下式子: 根据变分法,上式最小化即求解泊松方程: 其中Φ为待求的网格形变后坐标,w为网格形变后的梯度场. 上式可以进一步表示为求解稀疏线性方程组: 其中L为网格的拉普拉斯算子,b为梯度场w在网格顶点处的散度值. 问题的关键是如何得到网格形变后的梯度场w,文章[…
在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et al. 2005]提出的网格形变算法需要求解两次稀疏线性方程组:第一个方程定义了网格上离散坐标系之间的关系,通过求解该方程可以重组每个顶点的坐标系:第二个方程记录了顶点在局部坐标系的位置信息,通过求解该方程可以得到每个顶点的几何坐标. 在网格顶点建立局部坐标系(b1i,b2i,Ni),i∈V.对于…
混合有限元方法通入引入辅助变量后可以将高阶微分问题变成一系列低阶微分问题的组合.在三维网格形变问题中,我们考虑如下泛函极值问题: 其中u: Ω0 → R3是变形体的空间坐标,上述泛函极值问题对应的欧拉拉格朗日方程就是双调和方程∆2u = 0. 通过引入额外变量v,我们可以将上述无约束高阶优化问题转变为带约束的低阶优化问题: 引入拉格朗日函数,并利用格林公式可以得到: 将变量v,u,λ写成基函数的线性组合形式,并且基函数选择为分段线性帽函数: 将上式分别对变量vi,ui,λi求偏导可以得到: 这里…
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相邻面片之间的差异性,然后计算相似矩阵的前k个特征向量,这些特征向量将网格面片映射到k维谱空间的单位球上,最后使用K-means方法对谱空间中的数据点进行聚类.具体算法过程如下: 一.相似矩阵 网格分割以面片为基本单元,为了能使算法沿着几何模型的凹形区域进行分割,网格相邻面片之间的距离采用[Katz…
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则不能移动,那么如何求该点到达目的地N点的概率. 该问题可以描述为如下数学形式: P(0) = 0 P(N) = 1 P(x) = 1/2*P(x - 1) + 1/2*P(x + 1) for x = 1, 2, 3, … , N-1 如果用矩阵形式描述,即: 那么通过求解该线性方程组就可以得到各个…