首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
LOJ 3159: 「NOI2019」弹跳
】的更多相关文章
LOJ 3159: 「NOI2019」弹跳
题目传送门:LOJ #3159. 题意简述: 二维平面上有 \(n\) 个整点,给定每个整点的坐标 \((x_i,y_i)\). 有 \(m\) 种边,第 \(i\) 种边从 \(p_i\) 号点连向满足 \(l_i\le x_j\le r_i\) 和 \(d_i\le y_j\le u_i\) 的点 \(j\),即一个矩形范围内的所有点. 求 \(1\) 号点到其它每个点的最短路长度. 题解: 考虑 Dijkstra 算法求最短路的过程: 一开始只有起点的距离为 \(0\),而其它点距离为无限…
LOJ 3158: 「NOI2019」序列
题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \(L\) 个,使得选中的下标对应的数的总和最大. 题解: 题目相当于要求在两个序列中选出 \(K\) 对数,不妨一对一对地选. 有个结论是说,上一步的最优决策一定不会再反悔,就是已经选的不会再撤销. 然后做完了,用堆维护一些东西,精细实现就好了. 下面是代码,复杂度 \(\mathcal{O}\lef…
LOJ 3160: 「NOI2019」斗主地
题目传送门:LOJ #3160. 简要题意: 有一个长度为 \(n\) 的序列 \(a\),初始时 \(a_i=i\) 或 \(a_i=i^2\),这取决于 \(\mathrm{type}\) 的值. 对这个序列进行 \(m\) 次操作,每次操作给定一个值 \(A_i\),把这个序列分为两部分:\(a[1:A_i]\) 和 \(a[A_i+1:n]\),然后在不改变两个序列内部相对顺序的限制下,均匀地将这两个序列混合,形成新的序列,则新的序列 \(a\) 即为这个混合而成的新序列. \(Q\)…
LOJ 3156: 「NOI2019」回家路线
题目传送门:LOJ #3156. 题意简述: 有一张 \(n\) 个点 \(m\) 条边的有向图,边有两个权值 \(p_i\) 和 \(q_i\)(\(p_i<q_i\))表示若 \(p_i\) 时刻在这条边的起点,则 \(q_i\) 时刻能到达这条边的终点. 你需要规划一条路线,使得从起点 \(1\) 号点出发,沿着这条路线到达终点 \(n\) 号点. 假设路线依次经过的边为 \(\{a_1,a_2,\ldots,a_k\}\),则需要保证 \(q_{a_{i-1}}\le p_{a_i}\)…
「NOI2019」弹跳(KD树)
题意:w×h网格中有n个点,m条边.每条边可以从p点花费t时间到一个矩形中的任意点,求1号点到每个点的最少时间. \(1<=w,h<=n<=70000,1<=m<=150000\) 时间2s,空间128M. 本题如果放在序列上,使用线段树建图,可以做到\(O(mlogn)\)的复杂度,通过数据分治可以获得72分. 对于二维问题可以想到将线段树变为二维线段树,然而会被卡空间. 考虑此题暴力Dij的本质:就是每次找最小的点,然后把一个矩形中大于z的数都改为z,再删除这个点. 看到…
@loj - 3157@「NOI2019」机器人
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 R 喜欢研究机器人. 最近,小 R 新研制出了两种机器人,分别是 P 型机器人和 Q 型机器人.现在他要测试这两种机器人的移动能力,测试在从左到右排成一排的 \(n\) 个柱子上进行,柱子用 \(1\sim n\) 依次编号,\(i\) 号柱子的高度为一个正整数 \(h_i\).机器人只能在相邻柱子间移动,即:若机器人当前在 \(i\) 号柱子上,它只能尝试…
loj3161「NOI2019」I 君的探险(随机化,整体二分)
loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起来最好做的 $ B $ 类. 由于有每个点的父亲编号小于该点的优良特性,很容易想到整体二分. 考虑用整体二分求出每个点的父亲: 对于一个分治区间,毫无疑问 $ [l,mid] $ 的节点的父亲在左区间. 而对于另外一半节点,考虑将左半节点全部modify,此时右半某个节点亮起则说明左半节点至少有一个…
Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…