hadoop学习之yarn资源管理】的更多相关文章

一.yarn简介 yarn是在hadoop2.x中才引入的一个新的机制,在hadoop1.x中MapReduce任务需要同时做任务管理和资源分配,那么引入yarn之后,hadoop的资源管理的任务就全部交给yarn来处理,从而实现存储.任务.资源的分离. 二.yarn的主要角色 1.ResourceManager ResourceManager是基于应用程序对集群资源的需求进行调度的Yarn集群主控节点,负责协调和管理整个集群(所有 NodeManager)的资源,响应用户提交的不同类型应用的…
转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/,非常感谢分享! 对于业界的大数据存储及分布式处理系统来说,Hadoop 是耳熟能详的卓越开源分布式文件存储及处理框架,对于 Hadoop 框架的介绍在此不再累述,读者可参考 Hadoop 官方简介.使用和学习过老 Hadoop 框架(0.20.0 及之前版本)的同仁应该很熟悉如下的原 MapReduce 框架图: 图 1.Hadoop 原 MapReduce…
目录 一些基本知识 ResourceManager 的恢复 Resource Manager的HA YARN Node Labels YARN Node Attributes Web Application Proxy YARN Timeline Server 基于yarn的API,编写一个可以部署到yarn集群执行的应用 应用安全 Node Manager Health Checker Service CGroups with YARN Secure Containers 移除节点 Oppor…
Yarn的产生 mapReduc1.0 1单点故障 2扩展效率低 3资源利用率高 降低运维成本 方便数据共享 多计算框架支持 MapReduce Spark Storm Yarn的架构图 Yarn模块介绍 ResourceManger 负责集群资源的统一管理和调度 处理客户端请求 启动/监控ApplicationMaster 监控NodeManager 资源的分配与调度 NodeManager 负责单点资源的管理和使用 处理来自ResourceManager的命令 处理来自Application…
Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘.开源界及厂商,所有数据软件,无一不向Ha…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4       jdk8       hadoop-3.1.1 YARN:Yet Another Resource Negotiator 一.Yarn框架 1.概念由于MRv1存在的问题,Hadoop 2.0新引入的资源管理系统核心思想:将MRv1中JobTracker的资源管理和任务调度两个功能分开,分别由ResourceManager和ApplicationMaste…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
要想发挥Hadoop分布式.并行处理的优势,还须以分布式模式来部署运行Hadoop.单机模式是指Hadoop在单个节点上以单个进程的方式运行,伪分布模式是指在单个节点上运行NameNode.DataNode.JobTracker.TaskTracker.SeconderyNameNode5个进程,而分布式模式是指在不同节点上分别运行上述5个进程中的某几个,比如在某个节点上运行DataNode和TaskTracker. 前面几步和单机部署一样,可以参照Hadoop学习------Hadoop安装方…
我们很荣幸能够见证Hadoop十年从无到有,再到称王.感动于技术的日新月异时,希望通过这篇内容深入解读Hadoop的昨天.今天和明天,憧憬下一个十年. 本文分为技术篇.产业篇.应用篇.展望篇四部分 技术篇 2006年项目成立的一开始,“Hadoop”这个单词只代表了两个组件——HDFS和MapReduce.到现在的10个年头,这个单词代表的是“核心”(即Core Hadoop项目)以及与之相关的一个不断成长的生态系统.这个和Linux非常类似,都是由一个核心和一个生态系统组成. 现在Hadoop…
期望 通过这个mapreduce程序了解mapreduce程序执行的流程,着重从程序解执行的打印信息中提炼出有用信息. 执行前 程序代码 程序代码基本上是<hadoop权威指南>上原封不动搬下来的,目的为求出某一年份中最高气温,相关代码如下: public class NcdcWeather { private String USAF_station_id; private String WBAN_station_id; private String date; private String…
在Hadoop1(版本<=0.22)中,由于NameNode和JobTracker存在单点中,这制约了hadoop的发展,当集群规模超过2000台时,NameNode和JobTracker已经不堪重负.于是,全新架构的hadoop2(版本>=0.23)诞生了,可以支持分布式NameNode.NameNode HA(NameNode High Available),实现了NameNode的横向扩展,使得集群规模最大可支持上万个节点. 一.Hadoop2介绍 1.Hadoop1局限性  NameN…
简介 本向导简述了YARN资源管理器的HA,并详述了如何配置并使用该特性.RM负责追踪集群中的资源,并调度应用程序(如MapReduce作业).Hadoop2.4以前,RM是YARN集群中的单点故障.HA特性以Active/Standby RM对的形式对集群添加了冗余,从而消除了这种单点故障. 架构 RM故障恢复 RM HA是通过Active/Standby架构来实现的——任何时刻,有一个RM是活跃的(active),其他RM处于等待模式(Standby),等待当前活跃RM发生故障时可以接管其工…
阿里封神谈hadoop学习之路   封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 spark 摘要: 在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop.hive.spark等.笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1.ODPS等项目,目前base在E-Mapreduce.在这,笔者尽可能梳理下hadoop的学习之路. 引言 当前,越来越多的同…
1.hadoop量大,数目多. 存储:分布式,集群的概念,管理(主节点.从节点),HDFS. 分析:分布式.并行.离线计算框架,管理(主节点.从节点),MapReduce. 来源:GFS->HDFS,MapReduce->hadoop MapReduce,BigTable->HBase(hadoop的数据库,分布式的大数据存储和可扩展). HDFS+MR思想:尽量移动计算到数据端,而不是移动数据到计算端. HDFS默认存储是三份,解决硬件和网络故障问题. HDFS思想:文件单次写入,多次…
关于大数据,一看就懂,一懂就懵. 一.概述 本文介绍如何搭建hadoop分布式集群环境,前面文章已经介绍了如何搭建hadoop单机环境和伪分布式环境,如需要,请参看:大数据Hadoop学习之搭建hadoop平台(2.1).hadoop独立环境和伪分布式环境都无法发挥hadoop的价值,若想利用hadoop进行一些有价值的工作,必须搭建hadoop分布式集群环境. 下文以三台虚拟机为基础搭建集群环境,系统版本为CentOS-7,虚拟机地址分别为:192.168.1.106.192.168.1.10…
Hadoop生态和其他生态最大的不同之一就是“单一平台多种应用”的理念了. hadoop能解决是什么问题: 1.HDFS :海量数据存储 MapReduce: 海量数据分析   YARN :资源管理调度 理解: 1.资源管理调度(YARN)通过海量数据分析(MapReduce)进行对海量数据(HDFS)进行分析运算.  其中MapReduce是通过开发人员进行开发利用. 2.Hadoop在2.0将资源管理从MapReduce中独立出来变成通用框架后,就从1.0的三层结构演变为了现在的四层架构:…
英文看着头大,先试着翻译一下. E文原文:http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-yarn/hadoop-yarn-site/YARN.html 翻译真是太难了,而且我翻译的好烂,好烂,有时候自己也只能理解个大概. ====================================begin==================================== MapReduce在hadoop-0.2.3中发生了很大的变化…
转自:http://blog.csdn.net/wypblog/article/details/17528851 最近发现自己收集到的Hadoop学习资料有很多本,想想放在那里也浪费,所以觉得贴出来给大家分享,需要的可以去我CSDN里面下载,保证全部资源免费下载!这里面很多英文的资料. 1.<Hadoop技术内幕:深入解析Hadoop Common和HDFS>下载地址:http://download.csdn.net/detail/w397090770/6643259. 2.<Hadoo…
集群搭建文档1.0版本 1. 集群规划 所有需要用到的软件: 链接:http://pan.baidu.com/s/1jIlAz2Y 密码:kyxl 2.0 系统安装 2.1 主机名配置 vi /etc/sysconfig/network NETWORKING=yes vi /etc/sysconfig/network NETWORKING=yes HOSTNAME=ys02 vi /etc/sysconfig/network NETWORKING=yes vi /etc/sysconfig/ne…
(实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnblogs.com/qingyunzong/category/1169344.html 问题一: <Hadoop学习之路(四)Hadoop集群搭建和简单应用>执行start-dfs.sh时,报错3个: 1. 报错现象: 原因:hadoop默认ssh采用的是22端口号,但是我们公司内部机器为了安全已修…
1.<Hadoop技术内幕:深入解析Hadoop Common和HDFS>下载地址:http://download.csdn.net/detail/w397090770/6643259. 2.<Hadoop技术内幕:深入解析MapReduce架构设计与实现原理>下载地址:http://download.csdn.net/detail/w397090770/6643279. 3.<Hadoop技术内幕:深入解析YARN架构设计与实现原理>,下载地址:http://down…
目录 搭建安装 三个核心组件 安装 配置环境变量 配置各上述三组件守护进程的相关属性 启停 监控和性能 Hadoop Rack Awareness yarn的NodeManagers监控 命令 hdfs的命令 appendToFile cat checksum chgrp chmod chown copyFromLocal copyToLocal count cp df du find get getfacl getfattr head tail help usage truncate touc…
本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整个硬盘的容量的文件,这时需要将文件分割为若干较小的块,然后将这些块按照一定的规则分放在集群中若干台节点计算机里. 分布式文件系统的另一个作用是加速运算,在多台计算机上对每个子文件进行计算最后再汇总结果通常比在一台计算机上处理大量文件的运算要块.这种分而治之的思想倡导:与其追求造价昂贵的高性能计算机,…
MapReduce编程模型 在Google的一篇重要的论文MapReduce: Simplified Data Processing on Large Clusters中提到,Google公司有大量的诸如Web请求日志.爬虫抓取的文档之类的数据需要处理,由于数据量巨大,只能将其分散在成百上千台机器上处理,如何处理并行计算.如何分发数据.如何处理错误,所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理. 为了解决上述复杂的问题,Google设计一个新的抽象模型,使用这…
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成,而这就是Hadoop FS Shell.它主要是用于对Hadoop平台进行文件系统的管理. 有关HDFS的介绍博客请移步:Hadoop学习笔记之Hadoop基础. 有关Hadoop FS Shell的学习文档:Hadoop FS Shell学习文档. 2. Hadoop Streaming 我们知…
一.HDFS出现的背景 随着社会的进步,需要处理数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是却不方便管理和维护—>因此,迫切需要一种系统来管理多台机器上的文件,于是就产生了分布式文件管理系统,英文名成为DFS(Distributed File System). 那么,什么是分布式文件系统?简而言之,就是一种允许文件通过网络在多台主机上分享的文件系统,可以让多个机器上的多个用户分享文件和存储空间.它最大的特点是“通透性”,DFS让实际上是通过网络来…
Hadoop学习总结之五:Hadoop的运行痕迹   Hadoop 学习总结之一:HDFS简介 Hadoop学习总结之二:HDFS读写过程解析 Hadoop学习总结之三:Map-Reduce入门 Hadoop学习总结之四:Map-Reduce的过程解析 在使用hadoop的时候,可能遇到各种各样的问题,然而由于hadoop的运行机制比较复杂,因而出现了问题的时候比较难于发现问题. 本文欲通过某种方式跟踪Hadoop的运行痕迹,方便出现问题的时候可以通过这些痕迹来解决问题. 一.环境的搭建 为了能…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…
Hadoop学习笔记(6) ——重新认识Hadoop 之前,我们把hadoop从下载包部署到编写了helloworld,看到了结果.现是得开始稍微更深入地了解hadoop了. Hadoop包含了两大功能DFS和MapReduce, DFS可以理解为一个分布式文件系统,存储而已,所以这里暂时就不深入研究了,等后面读了其源码后,再来深入分析. 所以这里主要来研究一下MapReduce. 这样,我们先来看一下MapReduce的思想来源: alert("I'd like some Spaghetti!…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…