首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
bzoj 4766: 文艺计算姬 矩阵树定理
】的更多相关文章
BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看过推到完全图的生成树个数后这道题也不难做 构建出基尔霍夫矩阵,找一个主子式,所有行加起来放一行上,用这一行消消消就发现最后对角线上有$n-1$个$m$和$m-1$个$n$和$1$个$1$ 然后要用快速乘...蒟蒻第一次用快速乘... #include <iostream> using namesp…
bzoj 4766: 文艺计算姬 矩阵树定理
题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) 题解: 构建出基尔霍夫矩阵. 找到n-1阶主子式后将所有的行直接加到第一行上. 可以得到前n个是1,后m个是0的一个行向量. 然后用这个行向量消剩下的n-m-2行. 很容易得到一个上三角矩阵. 将对角线上的值乘起来即为答案. \(ans = n^{m-1}m^{n-1}\) #include <c…
BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数. 更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速算出其生成树个数. 小W不知道计算姬算的对不对,你能帮助他吗? Input 仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m} 1 &l…
[bzoj4766] 文艺计算姬 (矩阵树定理+二分图)
传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数.更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快 速算出其生成树个数.小W不知道计算姬算的对不对,你能帮助他吗? Input 仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}…
bzoj 4766: 文艺计算姬 -- 快速乘
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数.更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快 速算出其生成树个数.小W不知道计算姬算的对…
BZOJ 4766: 文艺计算姬
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 456 Solved: 239[Submit][Status][Discuss] Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数.更具体地,给定一个一边点数为n,另一边点数为m,共有…
BZOJ.4766.文艺计算姬(Prufer)
题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从m个点中选.so ans = n^{m-1}*m^{n-1} 答案可以根据相对顺序直接构造 //820kb 0ms #include <cstdio> typedef long long LL; LL n,m,p; LL Mult(LL a,LL b) { LL tmp=a*b-(LL)((lon…
【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKeyTom_FTD 构造完全二分图的基尔霍夫矩阵的余子式如下(去除第一行第一列):n=3,m=3,空白格皆为0 为了消项形成倒三角,将所有其它n+m-1行全部加到第n行上,则有: 然后将第n行叠加到前面n-1行上,形成倒三角: 虽然不是完全的倒三角,但因为其它排列的积为0所以没有影响,那么主对角线上的乘积就…
BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很丑 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define int…
bzoj 4765: 普通计算姬 主席树+替罪羊树思想
题目大意: 给定一棵\(n\)个节点的带权树有根树,设\(sum_p\)表示以点\(p\)为根的这棵子树中所有节点的权 计算姬支持下列两种操作: 给定两个整数\(u,v\),修改点\(u\)的权值为\(v\). 给定两个整数\(l,r\),计算\(\sum_{i=l}^rsum_i\) 题解: 表示自己没能想出来...被同桌嘲讽了QAQ... 首先是这道题的数据范围很奇怪,只有10W,这就说明了你有充足的时间来瞎搞 所以我们就瞎搞 如果没有修改操作那么我们直接\(O(n)\)预处理就可以\(O(…
bzoj 4765 普通计算姬(树状数组 + 分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=4765 很nice的一道题啊(可能是因为卡了n久终于做出来了 题意就是给你一棵带点权的有根树,sum(i)表示以i为根的这颗子树中所有节点的权值和.有两种操作,一种是修改某个点的权值,另一种是给出l,r,求sum(l)+sum(l+1)...+sum(r). 首先考虑一个简单的问题,如果单求其中一个sum(i),我们可以怎样做. 很明显我们画个图,我们可以看到每个点打上dfs序之后,每个sum就变成…
BZOJ 4765: 普通计算姬 [分块 树状数组 DFS序]
传送门 题意: 一棵树,支持单点修改和询问以$[l,r]$为根的子树的权值和的和 只有我这种不会分块的沙茶不会做这道题吗? 说一点总结: 子树和当然上$dfs$序了,询问原序列一段区间所有子树和,对原序列分块,$sum_i$为一块的答案 查询很显然了,整块用$sum$,非整块暴力查子树 修改的话,预处理$f[i][j]$为点$j$对第$i$块的贡献,一遍$dfs$就可以预处理出来 然后,我的$BIT$用了$build$函数竟然比不用还慢 真的很好写 #include <iostream> #i…
BZOJ 4765: 普通计算姬 (分块+树状数组)
传送门 解题思路 树上的分块题,,对于修改操作,每次修改只会对他父亲到根这条链上的元素有影响:对于查询操作,每次查询[l,r]内所有元素的子树,所以就考虑dfn序,进标记一次,出标记一次,然后子树就是进与出之间的所有元素.分块后预处理出每个点修改对当前块多少个元素的影响f[i][j],再预处理出每个块的和,然后修改时利用f数组暴力扫一遍所有块,查询是大块直接查sum,小块用树状数组查.要开unsigned long long #include<iostream> #include<cst…
bzoj 3534: [Sdoi2014]重建【矩阵树定理】
啊啊啊无脑背过果然不可取 比如这道题就不会写 参考:https://blog.csdn.net/iamzky/article/details/41317333 #include<iostream> #include<cstdio> #include<cmath> using namespace std; const int N=55; const double eps=1e-7; int n; double a[N][N],tmp=1; int cmp(double x…
图论&数学:矩阵树定理
运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u]++ 度数矩阵: u-v D[u][u]++ D[v][v]++; 然后计算图G的基尔霍夫矩阵 C=D-G 接着去掉基尔霍夫矩阵的第i行和第i列(必须都是i,i取任意值) 计算剩下的子矩阵的行列式的值得绝对值即为生成树个数 然后对于有向图来说: 边 u->v G[u][v]++ 然后是D[v][v…
BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会更简单. 引用一大神博客里的介绍:http://blog.csdn.net/u013010295/article/details/47451451 值得一提的是,有些题目要求行列式模上一个数的结果.怎么求模意义下的行列式呢?这些题答案都比较大,用浮点数的话精度达不到要求,确实是一个问题.(显然强行用…
BZOJ 1002 轮状病毒 矩阵树定理
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1002 题目大意: 给定n(N<=100),编程计算有多少个不同的n轮状病毒 思路: 大部分题解都是直接一个递推公式,具体得来的方法由矩阵树定理可以求得. 只是求矩阵的行列式的时候比较复杂. 具体证明过程:http://vfleaking.blog.163.com/blog/static/17480763420119685112649/ 需要高精度 #include <bits/st…
bzoj 4031: 小Z的房间 矩阵树定理
bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙).同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路.现在,你希望统计一共有多少种可行的方案. n,m <= 9 题…
bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Status][Discuss] Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪平等,幻想乡多元化等等,对于幻想乡 目前面临的种种大问题却给不出合适的解…
【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪平等,幻想乡多元化等等,对于幻想乡 目前面临的种种大问题却给不出合适的解决方案. 风间幽香是幻想乡里少有的意识到了问题的严…
【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m…
bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队1能修的路的方案数-不选工程队2能修的路的方案数--+不选工程队12能修的路的方案数+不选工程队13能修的路的方案数---不选工程队123能修的路的方案数-- 这里直接O(2^(n-1))枚举选择状态即可,然后根据不选的个数奇偶来决定在ans上减或加即可 #include<iostream> #i…
bzoj4766 文艺计算姬
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数.更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速算出其生成树个数.小W不知道计算姬算的对不对,你能帮助他吗? Input 仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m} 1 <=…
【BZOJ4766】文艺计算姬 [暴力]
文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description "奋战三星期,造台计算机". 小W响应号召,花了三星期造了台文艺计算姬. 文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数. 更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速…
【Learning】矩阵树定理 Matrix-Tree
矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理,用\(A\)计算出生成树个数. 1.无向图的生成树计数 对于给定的可含重边的连通无向图\(G\),求其生成树的个数.求法如下: 定义度数矩阵\(D\):该矩阵仅在对角线上有值,\(D_{i,i}\)表示\(i\)号点的度数.对于图中每一条无向边\((u,v)\),\(D_{u,u}\)++,\(D_…
【BZOJ5297】【CQOI2018】社交网络(矩阵树定理)
[BZOJ5297][CQOI2018]社交网络(矩阵树定理) 题面 BZOJ 洛谷 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发布一条消息 (例如微博.状态.Tweet等)后,他的好友们也可以看见这条消息,并可能转发.转发的消息还可以继续被人转 发,进而扩散到整个社交网络中.在一个实验性的小规模社交网络中我们发现,有时一条热门消息最终会被所有人 转发.为了研究这一现象发生的过程,我们希望计算一条消息所有可能的转发途径有多少种…
@总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满足权值小于\(lim\)的方案数 ,那么只需要考虑它们构成生成树的方案数就好了. 显然有用的可以和所有的有用的或者是坏的连边,好的但不有用的只能和坏的连边,而坏的随意. 但是这样子算出来的结果是至多,因此还需要额外容斥一下计算生成树的个数. #include<iostream> #include&…
CSU 1805 Three Capitals(矩阵树定理+Best定理)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所有的边,然后再回到A点,问一共有多少种方法. 思路: 16年湖南省赛题目,这道题目是求欧拉回路的个数,和生成树的计数有一定的联系. 首先给出神奇的Best定理,这是什么鬼定理,反正查不到什么有关该定理的文章... $ec(G)=t_s(G)\cdot deg(s)! \cdot \prod_{v\i…
【BZOJ3534】重建(矩阵树定理)
[BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> using namespace std; #define ll long long #define eps 1e-8 int n; double g[55][55],s=1; double Gauss() { double ret=1; for(int i=1;i<n;++i) { int nw=i;…