ACM数论-求组合数】的更多相关文章

我们利用这个公式求阶乘和逆元求阶: #include<cstdio> const int N = 200000 + 5; const int MOD = (int)1e9 + 7; int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘 void init(){ inv[1] = 1; for(int i = 2; i < N; i ++){ inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD; } F[…
Binomial Coeffcients nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; padding-right:0px; color:rgb(83,113,197); text-decoration:none; padding-top:0px"> Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述   输…
组合数并不陌生(´・ω・`) 我们都学过组合数 会求组合数吗 一般我们用杨辉三角性质 杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界) 第n行,第m个就是,就是C(n, m) (从0开始) 电脑上我们就开一个数组保存,像这样 用递推求 #include<cstdio> + ; ; int comb[N][N];//comb[n][m]就是C(n,m) void init(){ ; i < N; i ++){ comb[i][] = comb[i][i] = ; ; j &l…
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N integers a 1, a 2, -, a N, and M, K. She says each integers 1 ≤ a i ≤ M. And now Alice wants to ask for each d = 1 to M, how many different sequences b…
随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/article/details/49742129 https://blog.csdn.net/u011345136/article/details/38778121 一道组合数与全错排的公式. 组合数并不陌生(´・ω・`) 我们都学过组合数 会求组合数吗 一般我们用杨辉三角性质 杨辉三角上的每一个数…
Saving Beans http://acm.hdu.edu.cn/showproblem.php?pid=3037 #include<cstdio> typedef __int64 LL; ; class LUCAS { //lucas求组合数C(n,k)%p LL F[M]; LL inv(LL a,LL mod) { ) ; return inv(mod%a,mod)*(mod-mod/a)%mod; } void init(LL p) { F[]=; ; i<=p; i++)…
ACM数论——素数  素数定义: 质数(prime number)又称素数,有无限个.质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数,这样的数称为质数.例 子:2.3.5.7.11.13.17.19.(那时候还有一种说法叫做“质数”,但是就语言上来说,我觉得“素数”这种叫法和“合数”比较搭配,类比于“化学元素”和“化合物”来看,叫“素数”非常贴切) 素数一些性质: 质数p的约数只有两个:1和p: 任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,这种分解是唯一的:…
题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i范围为1e5,要用到逆元求组合数. AC代码: #include<cstdio> using namespace std; typedef long long LL; ; ; LL n,k,p,ans; LL inv[maxn],F[maxn],Finv[maxn]; void init(){ i…
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威尔逊定理 2.欧拉定理 3.孙子定理(中国剩余定理) 4.费马小定理 (提示:以后出现(mod p)就表示这个公式是在求余p的条件下成立) 1.威尔逊定理:(PS:威尔逊是个厉害人) 当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p ) 或者这么写( p -1 )! ≡ p-1 (…
URAL 1994 The Emperor's plan 求组合数 大数用log #include<functional> #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<vector> #include<cmath> #include<string> #include<queue>…