题目大意:给出一条圆弧上的两个端点A,B,和圆弧上两端点之间的一个点C,现在要用一块各个定点的坐标均为整数的矩形去覆盖这个圆弧,要求最小的矩形面积. 思路:叉积在本体发挥很强大的作用.首先求出三个点所在圆的圆心,也就是三角形的外心,然后判断着个圆上最上,最下,最左,最右四个点是否在该圆弧上,如果在,那么所求矩形的最上,最下,最左,最右边的坐标就是对应的点的坐标,否则,应该有圆弧两端点的坐标的相对大小来确定! 要判断一个点是否在圆弧上,主要用到叉积!把AB连结起来,设待检测的点式P,则如果是p在圆…