[LNOI2014]LCA(树链剖分)】的更多相关文章

[BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, Q≤50000 分析 对于一个点i,我们把i到根节点的路径全部标记+1,然后从z往上找,第一个碰到的标记不为0的节点就是lca(z,i).而i的深度恰好就是z到根节点路径上的标记和.显然这样的标记是可以叠加的,对于区间[l,r],我们把编号在[l,r]内的节点到根的路径都标记+1,那么答案就在z到根…
3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status][Discuss] Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LC…
说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... ---------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<iostream>   #define rep( i , n ) for( in…
题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)].(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和) 输入 第一行2个整数n q.接下来n-1行,分别表示点1到点n-1的父节点编号.接下来q行,每行3个整数l r z. 输出 输出q行,每行表示一个询问…
Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)].(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和) Input 第一行2个整数n q.接下来n-1行,分别表示点1到点n-1的父节点编号.接下来q行,每行3个整数l r z. Output…
题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)].(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和) 输入 第一行2个整数n q.接下来n-1行,分别表示点1到点n-1的父节点编号.接下来q行,每行3个整数l r z. 输出 输出q行,每行表示一个询问…
http://www.lydsy.com/JudgeOnline/problem.php?id=3626 LNOI的树链剖分题没有HAOI那么水,学到的东西还是很多的. 我如果现场写,很难想出来这种题,是时候复习一波离线算法泡脑子了.(没有暴力分的题,想不出来正解就爆零,太可怕了) 排序后离线操作通过前缀和计算答案,题解是hzwer的博客上复制的 http://hzwer.com/3891.html 直接引用清华爷gconeice的题解吧 显然,暴力求解的复杂度是无法承受的. 考虑这样的一种暴力…
思路转化很巧妙. 首先把询问做差分. 然后发现加入一个点就把路径上的点都+1,询问的时候直接询问到根的路径和. 这样和原问题是等价的,然后树链剖分+线段树就可以做了. #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> us…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3626 思路很巧妙,把区间换成前缀和相减: 把 l ~ r 到根路径上的点的点权都+1,然后 z 到根求和,就是 z 与 l  ~ r 每个点 lca 深度的和: 这里若要用前缀和,则需要把询问离线排序: 然后上树链剖分,修改和求和线段树解决即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring>…
题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定出现在z到根节点的路径上,则路径上的点会对结果产生贡献.那么可以对每个lca向根节点边走边给路径上的每个点贡献+1,求和后的结果就是该查询的答案.当然朴素地做肯定是不行地,可以用线段树维护每个点到根节点上的点贡献之和. 那么每次统计的话,等于将nloglog的复杂度重复q次,也不行.然而每次查询的区…