简单回归 这里以房价预测作为例子来说明:这里有一批关于房屋销售记录的历史数据,知道房价和房子的大小.接下来就根据房子的大小来预测下房价. 简单线性回归,如下图所示,找到一条线,大体描述了历史数据的走势. f(x) 代表房价的预测值 wo 代表截距(intercept) 相关系数 w1 代表特征(房子大小)的相关系数(coefficient) x 代表房子的大小 yi 代表房价真实值 xi 代表房子大小的真实值 εi 代表真实值与预测值之间的误差 已知x,只要求出wo和w1就能简单的对房价进行预测…
评估性能 评估损失 1.Training Error 首先要通过数据来训练模型,选取数据中的一部分作为训练数据. 损失函数可以使用绝对值误差或者平方误差等方法来计算,这里使用平方误差的方法,即: (y-f(x))2 使用此方法计算误差,然后计算所有数据点,并求平均数. Training Error 越小,模型越好?答案是否定的,下面看看Training Error 和模型复杂度的关系. 从上的的图可以看出,要想使training error越小,模型就会变得越复杂,然后出现了过拟合的现象 很有可…
多元回归 回顾一下简单线性回归:一个特征,两个相关系数 实际的应用要比这种情况复杂的多,比如 1.房价和房屋面积并不只是简单的线性关系. 2.影响房价的因素有很多,不仅仅是房屋面积,还包括很多其他因素. 现在描述第一种情况,房价和房屋面积不只是简单的线性关系,可能是二次或者多项式: 二次函数: 多项式函数: 多项式回归: 这里的特征都是通过房屋面积这个自变量得到的. 第二种情况,影响房屋价格的因素不仅仅是房屋面积,这里增加了卧室的数量.这种就是多元线性回归. 通用表达式: 多元线性回归中,理解相…
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables 1. Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the…
Question 1 Consider the problem of predicting how well a student does in her second year of college/university, given how well they did in their first year. Specifically, let x be equal to the number of "A" grades (including A-. A and A+ grades)…
必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to display the dataset[*] computeCost.m - Function to compute the cost of linear regression[*] gradientDescent.m - Function to run gradient descent 1.warmUpE…
  Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks, )  regression, classification. (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, dee…
在WEEK 5中,作业要求完成通过神经网络(NN)实现多分类的逻辑回归(MULTI-CLASS LOGISTIC REGRESSION)的监督学习(SUOERVISED LEARNING)来识别阿拉伯数字.作业主要目的是感受如何在NN中求代价函数(COST FUNCTION)和其假设函数中各个参量(THETA)的求导值(GRADIENT DERIVATIVE)(利用BACKPROPAGGATION). 难度不高,但问题是你要习惯使用MATLAB的矩阵QAQ,作为一名蒟蒻,我已经狗带了.以下代核心…
  Algorithm:     When to select Anonaly detection or Supervised learning? 总的来说guideline是如果positive example (anomaly examples)特别少就用Anamaly detection. 如果数据positive example 越来越多,可以选择从Anomanly detection 切换到 Supervised learning.     怎么选择feature ?   可以先画出f…