L2-001. 紧急救援】的更多相关文章

L2-001 紧急救援 (25 分) 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队. 输入格式: 输入第一行给出4个正整数N.M.S.D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0 ~ (N−1):M是快速道路的条数:S是出发地的城市编…
测试case要求,对于T=0和T=1卡,命令中是否存在Le是有差异的: - Select: Mandatory Command00 A4 04 00 Lc Command Data LeLc = 05 - 10 (Length of Command Data)Command Data = File NameLe = (Not Present T=0) - Select Next: Mandatory Command00 A4 04 02 Lc Command Data LeLc = 05 - 1…
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入L1正则会使不重要的w趋于0(达到稀疏编码的目的),引入L2正则会使w的绝对值普遍变小(达到权值衰减的目的).本节的话我们从几何角度再讲解下L1和L2正则的区别. L1正则是什么?|W1|+|W2|,假如|W1|+|W2|=1,也就是w1和w2的绝对值之和为1 .让你画|W1|+|W2|=1的图形,…
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟合问题,一般有两种思路,一种是用正则化方法,也就是限制模型的复杂度,比如Dropout.L1和L2正则化.早停和权重衰减(Weight Decay),一种是增大训练样本量,比如数据增强(Data Augmentation).这些方法的原理阐述可以看我之前整理的文章<深度学习之正则化方法>. 下面用…
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对值损失函数和平方损失函数 区别: 分析: robust: 与L2相比,L1受异常点影响比较小,因此稳健 stable: 如果仅一个点,L1就是一个直线,L2是二次,对于直线来说是多解,因此不稳定,而二次函数只有一个极小值点 L1.L2正则化 为什么出现正则化? 正则化的根本原因是 输入样本的丰度不够…
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适当的特征和数据用来训练:但往往现实生活中影响结果的因素是很多的,也就是说会有很多个特征值,所以训练模型的时候往往会造成过拟合的情况,如右边的坐标所示. 1.2公式 以图中的公式为例,往往我们得到的模型是: 为了能够得到中间坐标的图形,肯定是希望θ3和θ4越小越好,因为这两项越小就越接近于0,就可以得…
在某一层添加L2正则: from keras import regularizer model.add(layers.Dense(..., kernel_regularizer = regularizers(0.001),...)) 在某一层之后添加dropout层: model.add(layers.Dropout(0.5))…
1.了解知道Dropout原理 深度学习网路中,参数多,可能出现过拟合及费时问题.为了解决这一问题,通过实验,在2012年,Hinton在其论文<Improving neural networks by preventing co-adaptation of feature detectors>中提出Dropout.证明了其能有效解决过拟合的能力. dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络示意图如…
前面我们学习了L2 Population 的原理,今天讨论如何在 Neutron 中配置和启用此特性. 目前 L2 Population 支持 VXLAN with Linux bridge 和 VXLAN/GRE with OVS. 可以通过以下配置启用 L2 Population. 在 /etc/neutron/plugins/ml2/ml2_conf.ini 设置 l2population mechanism driver. mechanism_drivers = linuxbridge,…
前面我们学习了 VXLAN,今天讨论跟 VXLAN 紧密相关的 L2 Population. L2 Population 是用来提高 VXLAN 网络 Scalability 的. 通常我们说某个系统的 Scalability 好,其意思是: 当系统的规模变大时,仍然能够高效地工作. L2 Population 到底解决了怎样的 Scalability 问题? 请看下图: 这是一个包含 5 个节点的 VXLAN 网络,每个节点上运行了若干 VM. 现在假设 Host 1 上的 VM A 想与 H…
学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GRE/VxLAN 虚拟网络 (4)Neutron OVS OpenFlow 流表 和 L2 Population (5)Neutron DHCP Agent (6)Neutron L3 Agent (7)Neutron LBaas (8)Neutron Security Group (9)Neutro…
swift 001  = 赋值是没有返回值的 所以 int a=10; int b=20; if(a=b){ printf("这个是错误的"); } swift  中的模运算 是支持  浮点数的 模运算 例如 8%2.5   ==>  0.5     原理   8=(2.5*3)+0.5 swift  中 Bool 中的 数值有  true   或者  false 在c语言中  0  假  非0就是真 但是 在 swift 中  不存在   这个说法 swift  中   if(…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本量比较少,但是特征特别多的时候,可以用L1正则,把一部分不显著的特征系数变成0: 而样本量多,特征偏少的时候,可以使用L2正则,保留住所有的特征,只是让系数变小,接近于0. 机器学习中的范数规则化之(一)L0.L1与L2范数 :http://blog.csdn.net/zouxy09/article…
<Windows Azure Platform 系列文章目录> 在上一章内容中,笔者已经介绍了以下两个内容: 1.创建Virtual Network,并且设置了IP range 2.创建Azure AD VM,并且将AD加入到Virtual Network中. 本章将介绍如何创建一台Web Server Virtual Machine,并将该Web VM加入到Virtual Network中. 1.我们设置 - VM Name为LeiWeb001 - DNS设置为LeiWeb - VM Ima…
<zw版·Halcon-delphi系列原创教程> Halcon分类函数001·3D函数 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“procedure” :: 用大写字母“X”,替换:“IHUntypedObjectX” :: 省略了字符:“const”.“OleVariant” [示例] 说明 函数: procedure AddNoiseWhiteContourXld( const Contours: IHUntypedObjectX; out…
Error:Execution failed for task ':app:dexDebug'. > com.android.ide.common.process.ProcessException: org.gradle.process.internal.ExecException: Process 'command 'C:\Program Files (x86)\Java\jdk1.8.0_91\bin\java.exe'' finished with non-zero exit value…
Why do we need it, whatever it is? VM unicast, multicast and broadcast traffic flow is detailed in my previous post: Tunnels in Openstack Neutron TL;DR: Agent OVS flow tables implement learning. That is, any unknown unicast destination (IE: MAC addre…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…